

Korszerű nukleáris energiatermelés – Fúzió 3.

Mai berendezések: JET, W7-X, ITER

68

- 1. Telefon elővesz
- 2. WiFi jelszó: wigner2008, vagy mobilnet
- 3. Böngészőbe: Kahoot.it
- 4. Kód: kivetítőn
- 5. Név: Neptun kód !!!
- 6. Értékelés:
 - Az összes kérdésre hibátlan megoldás \rightarrow +1 pont
 - Többiek között az elért ponttal arányos eséllyel 2 x +1 pont sorsolás

Tokamak

Toroidális plazmaáram

- + Szimmetrikus 2D geometria
- + Érettebb technológia
- Alapvetően impulzus üzem
- Áram okozta instabilitások

Sztellarátor

Helikális tekercsek

- + Folytonos üzem
- + Nincsenek áram okozta instab.
- Komplex 3D geometria
- Kísérleti technológia

3

A jelenleg épülő legnagyobb tokamak (Cadarache) és sztellarátor (Greifswald).

6.8

Egy nagy lépés: Joint European Torus

- 1973: Tervezés elindul
- 1975: JET-R5 Report célok és tervek
- 1977: Építési terület kijelölése Culham
- 1979: Építés megkezdése
- 1983: Első plazma
 - 1984: Hivatalos megnyitó

Több nyitott kérdés volt:

- 1. Anomális transzport
- 2. Beta-limit
- 3. diszrupciók

Tervezési szempontok

Plazmaáram: 3.8 MA

lpha-részecskék összetartása

Toroidális mágneses tér: 2,8 T

mechanikai stabilitás

Sugárarány: 2,4

költségek minimalizásása

Geometria: D-alak

- középen a beső terekcs tartja a toroidális tekercseket
- a toroidális tekercs görbülete az ~1/R mágneses térnek megfelelő

RF Input

Antenna

Protection tiles

Tervezési szempontok – fűtések, stabilitás

Elnyújtott plazma

- → függőleges instabilitás
- vákuumkamra lassítja
- aktív stabilizálás

Dedikált célok

A plazma viselkedésének skálázása, ahogy a paraméterek a reaktor-releváns tartományt közelítik.

A JET belső fal ezen feltételek között.

A plazma fűtésének tanulmányozása.

Az α-részecsék keletkezésének, összetartásának és plazmafűtésének tanulmányozása.

UUUN

A JET felépítése – Vákuumkamra

Vákuum tartó, 500°C hőmérsékleten kifűthető, hűtött-fűtött, nagy elektromos ellenállású

- → összetett szerkezet
- → Nikkel ötvözet

A JET felépítése – Toroidális tér tekercsek

- 32 db D-alakú **réztekercs**
- menetszám: 24
- tömeg: 12 t
- áram összesen: 51 MA
- erő a kis sugár irányában: 600 t
- erő a nagy sugár irányában: 2000 t
- → külső mechanikai merevítés

A JET felépítése – Poloidális tér tekercsek

Poloidális tér tekercsek a plazma alakjának szabályozására

- · 6 réz tekercs
- átmérő: <11 m
- a toroidális tér tekercseken kívül

Belső tekercs a transzformátor

középső vasmagja körül

- réz tekercs
- vasmag: 8 kör laminált vasból 2600 t

8.8-

Időre elkészült!

Időre elkészült!

JET belső fal – 1991 divertor

JET belső fal – 1991 divertor

68

JET D-T kisülések

Korszerű nukleáris energiatermelés, 2019. szeptember 25.

Korszerű nukleáris energiatermelés, 2019. szeptember 25.

6.8

ITER-szerű fal – 2011

JET menetrend

A. Donne, ISFNT-14 (2019)

Korszerű nukleáris energiatermelés, 2019. szeptember 25.

25

Pokol Gergő: Fúzió 3.

6.8

JET diagnosztikák

Mit akarunk mérni?

- A plazma minden egyes pontján, a kisülés minden egyes időpontjában lokális paraméterek:
 - Hőmérsékletek,
 - > Sűrűségek,
 - Reakciósűrűségek,
 - Nyomások,
 - Áramsűrűség,
 - > Elektromos és mágneses tér,
 - Forgás és egyéb makroszkopikus áramlások,
- Minden időpontban **globális paraméterek**:
 - Összetartási idők,
 - Anyagmérleg,
 - Energiamérleg.
- > Technológia állapota.

...

. . .

6.8-

Miért akarjuk mérni?

1a: Szabályozás és védelem:

- plazma pozíció
- hőterhelés a plazmára néző elemeken
- B_t , I_p , n_e , teljes nyomás (stabilitási határok)

1b: Finom szabályozás:

- hőmérséklet profilok
- He sűrűség

2. Teljesítmény értékelése, fizikai megértés:

- Te, ne fluktuációk
- radiális elektromos tér

Korszerű nukleáris energiatermelés, 2019. szeptember 25.

Hogyan tudjuk mérni?

Passzív diagnosztikák

Mágneses tekercsek (integrális mérés)

Passzív spektroszkópia (vonalintegrált mérés)

Semleges részecske analizátor (integrális mérés)

Termográfia (lokális mérés)

Langmuir-szonda (lokális mérés)

<u>Aktív diagnosztikák</u>

Interferometria (vonalintegrált mérés)

Reflektometria (lokális mérés)

Thomson szórás (lokális mérés)

Atomnyaláb diagnosztikák (lokális mérés)

Nehézion nyaláb szonda (lokális mérés)

Hosszabb időskálákon a mért paraméterek kiterjeszthetők a mágneses felületek mentén!

Sztellarátor

Feltaláló: Lyman Spitzer, Princeton Plasma Physics Laboratory, USA, 1951

6.8

Wendelstein sztellarátorok

Wendelstein I-A (1961):

"Versenypálya" geometria Nagy sugár: 35 cm Kis sugár: 2 cm Mágneses tér: 1 T Cézium plazma Ohmikus fűtés

8.8-

Wendelstein sztellarátorok

Wendelstein II-A (1968):

Tórusz geometria Nagy sugár: 50 cm Kis sugár: 5 cm Mágneses tér: 0,6 T Bárium plazma *RF fűtés*

<u>_____</u>

Wendelstein sztellarátorok

Wendelstein 7-A (1976):

Tórusz geometria *Nagy sugár: 2 m* Kis sugár: 0,1 m *Mágneses tér: 3,4 T* Hidrogén plazma *Semleges atomnyaláb fűtés*

Korszerű nukleáris energiatermelés, 2019. szeptember 25.

Wendelstein sztellarátorok Structure **Poloidal Field Coils** Neutral Beam Injector Injection Port Coil Plasma Wendelstein 7-AS (1988): Moduláris sztellarátor (5 modul) Részlegesen optimaizált Nagy sugár: 2 m Kis sugár: 0,18 m Mágneses tér: 2,5 T

Hidrogén és deutérium plazma

Wendelstein sztellarátorok

Sztellarátor optimalizálás

Optimalizált sztellarátor!

Az optimalizálás szempontjai:

- Jó minőségű mágneses felületek
- Erősen lecsökkentett plazmaáramok
- Csökkentett ütközésmentes transzport
- Csökkentett gyorsrészecske veszteségek
- Jó MHD stabilitás
- Technikailag megvalósítható tekercsrendszer

Neoklasszikus transzport tokamakban

Neoklasszikus transzport sztellarátorban

Csökkentett neoklasszikus transzport a W7-X-ben

Mágneses felület (1 Periódus)

Csökkentett párhuzamos plazmaáram a W7-X-ben

L = 2 Sztellarátor

W7-X felépítése

Nagy sugár: 5.5 m Átlagos kis sugár: 0.53 m Középponti plazmasűrűség: 3.10²⁰ m⁻³ Középponti elektronhőmérséklet: 5-10 keV **Hidrogén és deutérium plazma**

W7-X felépítése

Divertor modulok (plazmahatároló elem): 10 darab Felületi teljesítménysűrűség: 10 MW/m² Folyamatos üzemmód aktív hűtéssel (végső konfiguráció) Kriopumpával szívott

W7-X felépítése

Image: second	
Vákuumkan	nra:
Vákuumkan Térfogat:	nra: 110 m ³
Vákuumkan Térfogat: Felület:	nra: 110 m ³ 200 m ²
Vákuumkan Térfogat: Felület: Vákuum:	hra: 110 m ³ 200 m ² < 10 ⁻⁸ mbar

50 térbeli tekercs (5 típus)
20 sík tekercs (2 típus)
5 modul, 2-2 szimmetrikus félmodul
NbTi szupravezető (< 3.4 K, 6.8 T, 17.8 kA)
Mágneses tér a plazma közepén: 2.5 T

150x400-400x1000 mm²

Pokol Gergő: Nagy fúziós kísérletek Európában: W7-X

http://www.ipp.mpg.de/1727365/zeitraffer_w7x

W7-X első H plazma - 2016.02.03.

Első kampányok:

- Jó összetartás
- Optimalizálás sikeres
- Rekord hármas szorzat
- Anomális transzport nagy
- Új optimalizálási algoritmusok

68

- 1. Telefon elővesz
- 2. WiFi jelszó: wigner2008, vagy mobilnet
- 3. Böngészőbe: Kahoot.it
- 4. Kód: kivetítőn
- 5. Név: Neptun kód !!!
- 6. <u>Értékelés</u>:
 - Az összes kérdésre hibátlan megoldás \rightarrow +1 pont
 - Többiek között az elért ponttal arányos eséllyel 2 x +1 pont sorsolás

52