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1. Introduction 

The technologies of medical imaging play a core role in the whole process of cancer management 

[1]. It can be accurately determined several important data such as tumor location, size, cancer 

metastasis, and whether treatment involves critical anatomical structures. However, the main 

advantage of the imaging technology is the ability to visualize tissue in non-invasive ways to avoid 

injury from invasive biopsy. [2] 

There are many mature imaging technologies, such as Computed Tomography (CT) imaging, 

Positron-emission Tomography (PET) imaging, Magnetic Resonance Imaging (MRI) and medical 

ultrasound imaging. Different modalities of molecular imaging technology can observe different 

information. CT images can assess the cancer structural features, especially soft tissue organs such 

as the spinal cord, lung, liver, pancreas, etc., but it cannot describe the functional details of solid 

tumors and it is difficult to find initial symptoms of cancer. PET images can detect the presence 

of early cancer cells and their molecule metabolic activities but have a poorer ability to describing 

structural tissue information [2]. MRI images are superior to CT in soft tissue such as nerves, blood 

vessels, muscles, etc. However, the detection of lung, liver, pancreas, adrenal gland and prostate 

is worse than CT and more expensive [3]. 

Although these imaging techniques are widely implemented in hospitals for treating patients, the 

expression of information from imaging is limited due to the oversimplification of internal 

diagnostic criteria. Therefore, there is an urgent need for an approach for quantitatively mining 

more valuable information from imaging to diagnose, treat and monitor disease. With the rapid 

development of hardware devices and imaging agents in medical imaging technology, a computer-

assisted standard quantitative extracted features method, known as radiomics, as the true 

transformative power of medical imaging analysis. 
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2. Literature  

2.1 Radiomics 

The quantitative analysis of tumor characteristics based on medical imaging in an emerging field 

of research [1] called radiomics. Radiomics, as its name already shows, is a process that converts 

medical images into high dimensional quantitative features. The features can be used as a training 

data for decision making in medicine. Radiomics shows important roles in precision medicine, 

thanks to its non- invasive characteristics. 

Radiomics begins with acquisition of high-quality images, followed by segmentation of region or 

volume of interest (ROI/VOI) extraction of quantitative features from the ROI/VOI, which are 

analyzed along with clinical and genomic data to develop diagnostic, predictive, or prognostic 

models for decision support. Radiomic analysis exploits advanced image analysis tools and the 

rapid development and validation of medical imaging data that uses image/based signatures for 

precision diagnosis and treatment.  

Radiomics has shown its ability in many areas in medicine, including prediction of patient survival, 

cancer recurrence, cancer stages, cancer risks and genetic features. The prediction ability of 

radiomics makes it a powerful tool for treatment assessment in medicine.[2] 

Studies have shown that quantitative imaging features derived from computed tomography, 

positron emission tomography and magnetic resonance imaging scans could add value in the 

prediction of outcome parameters in oncology. [3] 

For example, Nie et al. [5] evaluated multiparametric MRI features in predicting response after 

preoperative chemoradiation therapy for locally advanced rectal cancer and were able to build 

models with improved predictive value over conventional volume-based imaging metrics. [6] 

2.2 MRI (FLAIR) 

In this thesis I am going to present MRI examinations, so I would like to give a brief introduction 

of its theoretical foundation. 

MRI is a non-invasive tomographic method based on the magnetic resonance of nuclei. Its 

advantage over CT is that it has better contrast resolution in areas of soft tissues and the patient 

does not have to be exposed to the damaging effects of ionizing radiation. 

There is a structural MRI examination (sMRI), where the morphology of organs and tissues can 

be observed, and there is also a functional magnetic resonance imaging (fMRI), which can be used 

to obtain information about the function of examined organs and metabolic processes. 

The body to be examined is placed in a strong external magnetic field. The vector quantity 

characterizing the strength of the magnetic field is the magnetic induction (B), the unit of which is 
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tesla (T). MRI involves the use of 1–3 tesla-strength magnetic fields [8]. Under the influence of 

the magnetic field, the elementary magnets (in our case the protons) are oriented. In addition to 

the magnetic field, we give radio frequency pulses, which, when eliminated, try to restore the 

nuclear spins to their original random arrangement. 

With this method, the pixels are measured one by one. Protons can be characterized by three basic 

physical parameters for imaging: the density of protons and the two relaxation times associated 

with loss of orientation (i.e., T1 and T2 relaxation times) of nuclear spins oriented through the 

absorption of electromagnetic radiation. During T1 or longitudinal relaxation, the direction of 

macroscopic magnetization wants to return to the direction of the magnetic field. T1-weighted 

images are rich in detail, on them the fat has an increased signal intensity, the liquor has a reduced 

signal intensity, the gray matter can be well distinguished from the white matter. During T2 or 

transverse relaxation, the elementary magnets tend to move away from each other in two 

dimensions of space. In T2-weighted images, liquor gives an enhanced signal intensity, bordered 

by strong contrast, the gray matter gives a darker image, and the white matter gives a lighter image. 

[9] 

After the T1 and T2 MRI sequences the third commonly used sequence is the fluid-attenuated 

inversion recovery, or as I mentioned above FLAIR, is an MRI sequence with an inversion 

recovery set to null fluids. For example, it can be used in brain imaging to suppress cerebrospinal 

fluid (CSF) effects on the image.[4] So, in other words, FLAIR is an MRI technique that shows 

areas of tissue T2 prolongation as bright while suppressing (darkening) cerebrospinal fluid (CSF) 

signal, thus clearly revealing lesions in proximity to CSF. [8-10]  

 

Figure 1.: The same glioblastoma multiforme tumor in T1- and T2- weighted MRI sequence 

The Flair sequence is similar to a T2-weighted image except that the TE (Time to Echo) and TR 

(Repetition Time) times are very long. By doing so, abnormalities remain bright but normal CSF 

fluid is attenuated and made dark. This sequence is very sensitive to pathology and makes the 

differentiation between CSF and an abnormality much easier. [11] 
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 TR 

(msec) 

TE 

(msec) 

T1-Weighted 

(short TR and TE) 
500 14 

T2-Weighted 

(long TR and TE) 
4000 90 

Flair 

(very long TR and TE 
9000 114 

Table 1.: Commonly used MRI Sequences and their approximate TR and TE times 

Tissue T1-Weighted T2-Weighted Flair 

CSF Dark Bright Dark 

White Matter Light Dark Gray Dark Gray 

Cortex Gray Light Gray Light Gray 

Fat (within bone 

marrow) 
Bright Light Light 

Inflammation 

(infection, 

demyelination) 

Dark Bright Bright 

Table 2.: Comparison of T1 vs. T2 vs. Flair (Brain) 

The aim of a FLAIR sequence is to suppress liquid signals by inversion-recovery at an adapted TI. 

Water has a long T1. Nulling of the water signal is seen at TI of 2000 milliseconds. As in the case 

of the other inversion-recovery sequences, an imaging sequence of the fast spin echo type is 

preferable to compensate the long acquisition time linked to long TR. [7] 

 

Figure 2.: Glioblastoma multiforme tumor in FLAIR MRI sequence 
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2.3 Glioblastoma multiforme 

In the first stage of my thesis we had accessed a huge dataset from The Cancer Genome Atlas 

(TCGA) Glioblastoma Multiforme (GBM) and Low Grade Glioma (TCGA-LGG) collection, 

publicly available in the Cancer Imaging Archive [12] website. 

After examining both types of cancer and their MRI scans, I had chosen the T2- Flair MRI scans 

of the glioblastoma multiforme (GBM) dataset due to the highest number of valid images for this 

study. 

 

Figure 3.: left: Glioblastoma multiforme (T2-FLAIR); right: Low Grade Glioma (T2-FLAIR) 

Glioblastoma multiforme (GBM) is the most aggressive and highly invasive high-grade glioma 

tumor with poor prognosis. It can occur in the brain or spinal cord. Glioblastoma develops from 

tar-shaped glial cells called astrocytes and oligodendrocytes that support the health of nerve cells 

within the brain. [13] 

Because glioblastoma grows rapidly, its most common symptoms are due to a sudden increase in 

intracranial pressure. Symptoms include headache, dizziness, nausea, vomiting, memory loss, and 

personality change. Depending on the localization, different symptoms may appear, such as speech 

disturbances, vision problems, or unilateral paralysis [14]. 

Its diagnosis can be clarified with the help of biomarkers, primarily from radiological and biopsy 

samples, and possibly from blood. For example, immunohistochemical detection of the astrocyte-

specific protein, GFAP (glial fibrillary acidic protein), helps to identify the tumor [15]. The exact 

root cause of the tumor is unknown. 

2.3.1 The role of inflammation in glioblastoma 

Inflammation is a natural response to any injury or damage to the body. A protective reaction also 

begins around glioblastomas, an aqueous, inflammatory yard develops around the tumor. 

Sometimes the tumor itself is quite small, one to two centimeters, but most of the brain is 

edematous and we detect this on the tumor with imaging. Acute inflammation can be transformed 

into chronic inflammation, which favors tumor growth [14]. We can conclude that, in terms of 
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both tumor growth and recognition, the brain tumor and the inflammation surrounding it can go 

hand in hand. 

2.3.2 Treatment of glioblastoma multiforme 

Treatment of glioblastoma is very difficult because the tumor is resistant to classical surgical 

therapy, certain brain functions may be impaired during surgery, and nervous system regeneration 

is limited, and because many drugs cannot cross the blood-brain barrier. Therapy consists of 

treating symptoms as well as reducing tumor size.[15] 

Supportive care consists of improving the patient's neurological function, using corticosteroids and 

anticonvulsants. Steroids can reduce the edema around the tumor, their most commonly prescribed 

type being dexamethasone. Antiepileptic drugs inhibit the development of epileptic seizures, most 

notably levetiracetam. Brain-stimulating drugs can reduce fatigue; antiemetics and antidepressants 

may occasionally be considered as treatments [12]. 

Tumor reduction procedures do not cause complete recovery in the vast majority of cases, and the 

combined use of several methods is recommended. 

Usually, the first step is surgical treatment, which aims to obtain a tumor sample for an accurate 

diagnosis and to remove as many tumor parts as safely as possible. The lesion is almost impossible 

to completely remove, especially if it is close to important brain centers (such as speech and 

coordination). Due to its protruding structure, it is difficult to find the boundary between cancerous 

and healthy tissue. Partial removal may reduce the rate of spread. Attempts are being made to 

reduce residual tumor growth with radiation therapy, chemotherapy, and biologic therapy. [13] 

Radiation therapy usually lasts 5-6 weeks for 5 days a week, patients receive external radiation. 

Chemotherapy consists of 6 weeks of temozolomide treatment concomitantly with radiotherapy. 

The drug is an alkylating agent that crosses the blood-brain barrier and aids in the sensitivity of 

cells to radiation therapy [14]. 

The prognosis is poor, survival is around 2-3 years, 3 months without treatment. Not all 

glioblastomas are the same, so different patients respond better to different treatments.  

  



12 
 

 

3. Aim of the thesis 

This thesis aims to explore the potential of radiomics in prognostic medical applications and to 

understand the relationships between different texture features. Because of the high dimensional 

data structure, we have proposed mature feature selection by classification models to select the 

most suitable radiomic pattern. 

Moreover, the aims of this thesis are to show that radiomics has a great potential to improve the 

clinical decision support system. My purpose is to provide deeper understanding of fundamental 

technical and methodology aspects. I am going to use and introduce general and specific analysis 

methods of radiomics analysis.  

My aim was, besides the understanding of the radiomics method, was to evaluate the potential 

application of textural analysis as used as a prognostic tool in glioblastoma, and to identify 

radiomic predictors to find the best subset one by the applied classifier. 
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4. Methods 

The process of radiomics can be categorized in five steps as follows: image acquisition, image 

segmentation, feature extraction, feature selection and integrated analysis. 

4.1 Image Acquisition 

For any study, the first step is to acquire the appropriate images. As I have mentioned the MRI 

scans are publicly available for everyone on the Cancer Imaging Archive website.[2] Our purpose 

was to work with the largest dataset as possible, so I had chosen the Glioblastoma Multiforme 

(GBM) dataset with the T2- FLAIR scans. A total number of 138 patients were enrolled in this 

study (full dataset).  

After examining 138 GBM T2-FLAIR MR sequenced images there was only evaluated the subset 

of cases, 77 patients. There were 29 scans where the tumor was on both sides of the brain, since 

we used one of the sides as a control group (the non-tumorous one), those scans couldn’t be used 

in this study. 8 scans had artifacts, so the segmentation wouldn’t have been accurate, 13 scans were 

obtained from the Sagittal plane, and 4 more from the Coronal plane. 7 scans were made in the 

1990s thus the quality and number of slices of these images wouldn’t allow us any further process. 

Thus, our restricted dataset contains 77 patients. 

4.2 Segmentation 

The Medical Imaging Interaction Toolkit (MITK Workbench, v.2018.04.2) is a free open-source 

software system for development of interactive medical image processing software. [17]. This 

software was used to display and process radiological images. The segmentation was manually 

accomplished by me. I had separated the brain to the left and right side one side with the tumor 

and one without.  

Depending on which side has the GBM, the ROIs have to be marked. For ease of programming, I 

used the 1 and 0 values for differentiation in the evaluating program. 
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Figure 4.: Example: Left brain T2-FLAIR MRI sequence segmentation (with left side GBM) 

 

The whole scans were in DICOM file format, however MITK made it possible to save the modified 

images, segmentations in DICOM and NifTi format as well. Both of the formats are easy to work 

with in MATLAB, because there are already existing built in functions to them, which helps in the 

evaluation. 

4.3 Feature Extraction 

The third step is feature extraction, which computes hundreds of features from a given region of 

interest. There are plenty types of analysis what we are able to use on a (medical) images. Figure 

5. shows some of the main kinds. 

 

Figure 5.: Example of a workflow of radiomic analysis and different kind of feature extraction types [12] 

 

The features are defined using mathematical formulas and are thus objective imaging features. The 

features are broadly classified into four categories: morphological (tumor shape), histogram- or 
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first order-based, textural, and transform-based (LoG- or Wavelet-based) features. In the case of 

the morphological process the features reflect the physical characteristics of the ROI such as the 

tumor area, volume, compactness. The first order based feature extraction and texture analysis 

exact information from the intensity of the pixels from the ROI. The main features in this case are 

main, median, entropy, etc. Texture-based analysis and texture features consider voxels and their 

neighbors grey-scale level. Transform-based features involve transforming the original image with 

a user-selected transform, such as low or high pass filtering, although these filtering make changes 

in the grey level.[39] 

In this thesis the feature extraction is based on texture analysis. To calculate the various spatial 

parameters, a program called ‘Radiomics Master’ written in MATLAB (MathWorks, v.2020a) by 

Martin Vallieres [23] is available publicly. My program, calculations and results were built on this 

evaluation program. I had modified some of its algorithms to fit the files I had to work on and to 

gain specific evaluation outputs. I also had to implement a file management algorithm to evaluate 

the correct files in the folder system 

Firstly, since the MRI scan slices were separated in every patient dataset, I wrote a merging loop 

which made it easier to handle with the large DICOM dataset. 

Still working on the file management, the next step was to open up and merge the matching MRI 

scans, with its left and right sided ROIs and to get a mask and a volume data from the area. 

With a small change in the algorithms (especially with the prepareVolume function), the program 

became suitable for parameterizing an image obtained with either functional (SPECT, PET) or 

morphological (MRI, CT) modality. 

 

 

In general, the algorithm’s process chart looks like: 

N := length(folder system) 

i = 1 : N 

 files = dicomread1 (list2(i)) 

1dicomread: built-in function, reads the image data from the compliant Digital Imaging and 

Communications in Medicine (DICOM) file filename.[32] 

2list: list of the dicom filenames 
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i,j,k ∈ Z; 

i = 1 : length (files)  

 

[ROIonly, levels] = prepareVolume (…) 

nbins = length(histcounts3(ROIonly)) 

output.variance, output.skewness,…= getGlobalTextures(ROIonly, nbins) 

group := [0 if the tumor is on the left side, 1 if the tumor is on the right side] 

j = 1 : n_patient4 

 k = 1 : length(files) 

  

featurematrix (j,k) = output.variance 

featurematrix (j,k) = output.skewness 

… 

[B, fitinfo6] = Lassoglm5(…) 

LassoPlot(B, fitinfo,…) 

3histcounts(X) partitions the X values into bins, and returns the count in each bin, as well as the bin edges. 

The histcounts function uses an automatic binning algorithm that returns bins with a uniform width, chosen 

to cover the range of elements in X and reveal the underlying shape of the distribution [32]. 

4n_patient: the number of the patients 

5returns penalized, maximum-likelihood fitted coefficients for generalized linear models of the predictor 

data X and the response y, where the values in y are assumed to have a normal probability distribution. Each 

column of B corresponds to a particular regularization coefficient in Lambda. By default, Lassoglm performs 

Lasso regularization using a geometric sequence of Lambda values.  

6[B, FitInfo] = Lassoglm(___) returns the structure FitInfo, which contains information about the fit of the 

models, using any of the input arguments in the previous syntaxes. 

 

The code’s main function is the prepareVolume function, which uses our dataset properties, so 

let’s take a deeper look at the in- and outputs of it. 

 

[𝑹𝑶𝑰𝒐𝒏𝒍𝒚, 𝒍𝒆𝒗𝒆𝒍𝒔]  

= 𝒑𝒓𝒆𝒑𝒂𝒓𝒆𝑽𝒐𝒍𝒖𝒎𝒆(𝒗𝒐𝒍𝒖𝒎𝒆, 𝒎𝒂𝒔𝒌, 𝒔𝒄𝒂𝒏𝑻𝒚𝒑𝒆, 𝒑𝒊𝒙𝒆𝒍𝑾, 𝒔𝒍𝒊𝒄𝒆𝑺, 𝑹, 𝒔𝒄𝒂𝒍𝒆, 𝒕𝒆𝒙𝒕𝑻𝒚𝒑𝒆, 𝒒𝒖𝒂𝒏𝒕𝑨𝒍𝒈𝒐, 𝑵𝒈) 

 

where the inputs are the followings: 

- volume: 2D (or 3D) array containing the medical images to analyze  

- mask: 2D (or 3D) array of dimensions corresponding to 'volume'. The mask contains 1's in the 

region of interest (ROI), and 0's elsewhere 

https://www.mathworks.com/help/stats/lassoglm.html#d122e475714
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- scanType: String specifying the type of scan analyzed. Either 'PETscan', 'MRscan' or 'Other'. In 

this case we had chosen the ‘MRscan’ input. 

- pixelW: Numerical value specifying the in-plane resolution (mm) of 'volume', which is 1.  

- sliceS: Numerical value specifying the slice spacing (mm) of 'volume'. Put a random number for 

2D analysis. 

- R: Numerical value specifying the ratio of weight to band-pass coefficients over the weight of 

the rest of coefficients (HHH and LLL). Provide R=1 to not perform wavelet band-pass filtering. 

We used 1 as we didn’t want to perform wavelet band-pass filtering.    

- Scale: Numerical value specifying the scale at which 'volume' is isotropically resampled (mm). 

If a string 'pixelW' is entered as input, the volume will be isotropically resampled at the initial in-

plane resolution of 'volume' specified by 'pixelW'. 

- textType: String specifying for which type of textures 'volume' is being prepared. Either 'Global' 

or 'Matrix'. If 'Global', the volume will be prepared for Global texture features computation. If 

'Matrix', the volume will be prepared for matrix-based texture features computation (i.e. GLCM, 

GLRLM, GLSZM).[27-31] 

- quantAlgo: String specifying the quantization algorithm to use on 'volume'. Either 'Equal' for 

equal-probability quantization, 'Lloyd' for Lloyd-Max quantization, or 'Uniform' for uniform 

quantization. Use only if textType is set to 'Matrix'.  

The image first needs to be quantized to a reasonable bit depth prior to calculate the grey-level 

matrices. In the original paper, Haralick[26] proposes using an equal probability quantizer - in 

order for the extracted textures to be invariant under monotonic gray-tone transformations - thus 

we had chosen the Equal-probability quantization as well.[26]. 

- Ng: Integer specifying the number of gray levels in the quantization process. Use only if textType 

is set to 'Matrix'. [27-31] 

All in all, the prepareVolume function and its inputs will look like: 

 

[𝑹𝑶𝑰𝒐𝒏𝒍𝒚, 𝒍𝒆𝒗𝒆𝒍𝒔] = 

 𝒑𝒓𝒆𝒑𝒂𝒓𝒆𝑽𝒐𝒍𝒖𝒎𝒆(𝒗𝒐𝒍, 𝒎𝒂𝒔𝒌, ′𝑴𝑹𝒔𝒄𝒂𝒏′, 𝟏, 𝟏, 𝟏, 𝟏, ′𝑴𝒂𝒕𝒓𝒊𝒙′, ′𝑬𝒒𝒖𝒂𝒍′, 𝟑𝟐); 

 

The outputs are: 

- ROIonly: Smallest box containing the ROI, with the imaging data of the ready for texture analysis 

computations. Voxels outside the ROI are set to NaNs. 

- levels: Vector containing the quantized gray-levels in the tumor region (or reconstruction levels 

of quantization).[23]  
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4.4 Texture Analysis  

In this thesis I worked with texture- based radiomics analysis, since they are a central type of 

features that can be extracted from the region of interest. However, textures remain the core of 

radiomic feature computation, are given their higher-order characterization of spatial patterns in 

imaging volumes. [21]  

In this thesis, texture features from four major categories were extracted:  

I) Global features; 

II) Gray-Level Co-occurrence Matrix (GLCM) features; 

III) Gray-Level Run-Length Matrix (GLRLM) features;  

IV) Gray-Level Size Zone Matrix (GLSZM) features. 

To aim a deeper understanding of the background of the MATLAB code and the texture analysis, 

let’s discuss firstly the 3 Grey-Level Matrix calculation methods. 

4.4.1 Gray-Level Co-occurrence Matrix  

Grey level Co-occurrence matrix is one of the earliest method feature extraction via texture 

analysis. It was proposed at first by Haralick at all [ref] in 1973. Grey Level Co-occurrence matrix 

or Co-occurrence distribution is defined over an image to be the distribution of co-occurring values 

at a given offset or represents the distance and angular spatial relationship over an image subregion 

of a specific size. As its name speaks GLCM is created from a gray scale image. In some simple 

words GLCM calculates the greyscale intensity or tone, so how often is a pixel with a specific grey 

level, thus it is based on the resolution of the image. GLCM has three main directions for the 

calculation. It is horizontal (0), vertical (90) and diagonal (-45 or 135). 

 

If P defines the Gray Level Co-Occurrence Matrix of a quantized ROI imaging volume V (x, y, 

z) with isotropic voxel size, such as in this study the two sides of the brain, then each entry P (i, 

j) of P represents the number of times voxels of gray level i are neighbors with voxels of gray 

level j in V. [26] 

The gray-level co-occurrence matrix is going to be a symmetric matrix with the size of the 

predefined number of quantized gray levels in the voxel. 

 

4.4.2 Gray-Level Run-Length Matrix 

The concept of GLRLM was proposed by Galloway in 1975. The Gray Level Run-Length matrix 

(GLRLM) quantifies how many consecutive pixels have the same value along a predefined 

direction. The rows of the matrix represent the discretized gray level and the columns the run—
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length nonuniformity and the run-percentage – to emphasize different properties of these matrix 

[40]. 

Let P define the GLRLM of a quantized ROI imaging volume VQ(x, y, z) with isotropic voxel size. 

Each entry P (i, j) of P represents the number of runs of gray level i and of length j in VQ(x, y, z). 

A run is a 1D line of connected voxels with an identical gray level. The GLRLM is a matrix of 

size Ng × Lr, where Ng represents the pre-defined number of quantized gray levels set in VQ (x, y, 

z), and Lr the length of the longest run (of any gray level). The resulting GLRLM of that image is 

filled in by counting all the possible runs of connected pixels with identical gray levels for a given 

direction. [26] Similar to those derived from GLCMs, these statistics can be calculated in all four 

directions thus to obtain rotationally invariant results, they should be averaged. 

4.4.3 Gray-Level Size Zone Matrix  

The Grey Level Size Zone Matrix idea is based on the previous Grey Level Run Length Matrix. 

The concept of the GLSZM was proposed by Thibault et all in 2009. The matrix quantifies the 

number of continuous pixels with the same grey level. [41] A voxel is considered connected if the 

distance is 1 according to the infinity norm (26-connected region in a 3D, 8-connected region in 

2D). Contrary to GLCM and GLRLM, the GLSZM is rotation independent, with only one matrix 

calculated for all directions in the ROI. 

 

Let P define the GLSZM of a quantized ROI imaging volume VQ (x, y, z) with isotropic voxel size. 

In a gray level size zone matrix P(i,j) the (i,j)th element equals the number of zones with gray level 

i and size j appear in image. A zone is a 2D region of connected voxels with an identical gray level. 

The GLSZM is a matrix of size Ng × Lz, where Ng represents the pre-defined number of quantized 

gray levels set in VQ(x, y, z), and Lz the size of the largest zone (of any gray level). [37] 

4.4.4 Example 

I would like to represent an example for the three matrix calculations. Let’s take a look at a specific 

example for all of them one by one. We can see on Fig. 6. a four different grey-scale level matrix.  

GLCM relies on pixel pairs (on Fig.6. interpixel distance are zero). On the a, matrix of Fig. 6. we 

can find the number 4 stands next to number 1 as an exact neighbor in a horizontal direction three 

times (highlighted in yellow) so this gives in the GLC matrix in 4th row and 1st column the value 

3.  

GLRLM relies on pixel runs. On Fig. 6. (b) the number 3 grey scale value runs 3 times long in a 

horizontal direction only in one case (highlighted in yellow) Thus the GLRL matrix in the 3rd row 

and 3rd column gives a 1 value. 
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GLSZM relies on areas of neighboring pixels with same gray-level. On Fig. 6. (c) the number 2 

takes place 4 times right next to each other (reminder that GLSZM is a rotation independent 

calculation method) in all 4 directions (highlighted in yellow). Therefore, the Grey Level Size 

Zone Matrix’s 2nd row and 4th column give us the value of 1. 

 

 

Figure 6.: Calculation of radiomic texture features.[38] 

 

4.5 Texture features  

In total, 36 texture features were extracted from the four separate groups divided by the left and 

right brain as well. Table 3. presents the list of texture features used in this thesis. 

Global features are extracted from the intensity histogram of the ROI, whereas GLCM, GLRLM, 

and GLSZM textures are matrix-based features. In this work, histograms with 100 bins were used 

for the computation of Global features.  

 

 

Texture Type Texture name 

Global 

Variance 

Skewness 

Kurtosis 

GLCM 

(Grey level cooccurrence matrix) 

 

Energy 

Contrast 

Correlation 

Homogeneity 

Variance 

Sum Average 

Entropy 

Autocorrelation 

Dissimilarity 
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GLRLM 

(Grey level run length matrix) 

Short-Run Emphasis (SRE) 

Long-Run Emphasis LRE 

Grey-Level Non-uniformity (GLN) 

Run Length Non-uniformity (RLN) 

Run Percentage (RP) 

Low Grey-Level Run Emphasis (LGRE) 

High Grey-Level Run Emphasis (HGRE) 

Short Run Low Grey-Level Emphasis (SRLGE) 

Short Run High Grey-Level Emphasis (SRHGE) 

Long Run Low Grey-Level Emphasis (LRLGE) 

Long Run High Grey-Level Emphasis (LRHGE) 

Grey-Level Variance (GLV) 

Run-Length Variance (RLV) 

GLSZM 

(Grey level size zone matrix) 

Small Zone Emphasis (SZE) 

Large Zone Emphasis (LZE) 

Grey-Level Non-uniformity (GLN) 

Zone Size Non-uniformity (ZSN) 

Zone Percentage (ZP) 

Low Grey-Level Zone Emphasis (LGZE) 

High Grey-Level Zone Emphasis (HGZE) 

Small Zone Low Grey-Level Emphasis 

(SZLGE) 

Small Zone High Grey-Level Emphasis 

(SZHGE) 

Large Zone Low Grey-Level Emphasis (LZLGE) 

Large Zone High Grey-Level Emphasis (LZHGE) 

Grey-Level Variance (GLV) 

Zone Size Variance (ZSV) 

Table 3: The list of texture features 

 

4.6 Feature selection  

When we reached this point in the study, we already have lots of data with lots of features of the 

images. Certainly, the following step in radiomics is to choose a variable or feature selection 

method to select the best subset of predictors. This way we can explain the data in the simplest 

way without any noise in the estimation of other quantities of interest caused by unnecessary 

predictors. 

4.7 Correlation 

The Pearson correlation coefficient (PCC) measures the linear relationship between two datasets. 

Strictly speaking, Pearson's correlation requires that each dataset be normally distributed. Like 

other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. 

Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x 

increases, so does y. Negative correlations imply that as x increases, y decreases. 
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So, in simpler words, significance of PCC is basically to show you how strongly correlated the 

two variables are. It is important to note that the PCC value ranges from -1 to 1. A value between 

0 to 1 denotes a positive correlation. Value of 0 = highest variation (no correlation whatsoever). A 

value between -1 to 0 denotes a negative correlation. 

From the asymmetric structure matrix shown in Fig. 7, we can read the correlations between the 

parameters. The proportion of the parameters are indicated in colors. The control group’s texture 

features are in the columns and the rows contain the tumor side parameters. Based on the color 

scale on the right, we can tell what is the proportion among the tumor and control group. 

Those close to 0 are indicated in green, the negative correlation is shown in blue and the positive 

correlation in yellow. The values of each parameter correlate well with each other, if it was found 

to be nearly the same color on the figure. 

 

Figure 7: Cross correlation matrix. Numerical values correspond to Pearson correlation coefficient 

 

The Figure 7 shows the cross-correlation matrix, indicating that there are multiple and complex 

cross correlation among different covariates. The x-axis is the Control side, the non-tumorous side, 

and the y-axis is the tumor side. As we can see the least correlating parameters are the Size Zone 

High Grey-Level Emphasis (SZHGE), the High Grey-Level Run Emphasis (HGRE), the Grey 

Level Non-uniformity (GLN) and the Variance and Skewness, Zone Size Variance (ZSV). 

The most positively correlating features are intensive yellow colored. Such as Run Length Non-

uniformity (RLN), Run Percentage (RP), Zone Size Non-uniformity (ZSN) and Zone Percentage. 

The most negatively correlating features are deep blue colored. Such as Long Run Emphasis (LRE) 

and Homogeneity. 
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In a more detailed way, I would like to represent the correlation scatter graphs between the same 

features on the tumor side(x-axis) and the control side (y-axis).  

4.7.1 Global texture features correlation 

 

   

Figure 8 (a): Global features scatter plot 

 

In the case of Global features, the scatter plot is shown in Fig. 

8 (a). The three features Variance, Skewness and Kurtosis 

were plotted to separately. It can be claimed that the most 

correlating one among the three features is the Variance. In the 

Figure 9 (a), the exact Pearson correlation coefficients are 

represented in a heatmap matrix.  

Figure 9 (a) Cross correlation matrix with Pearson correlation 

coefficients on Global texture analysis tumor and control features 

 

4.7.2 Grey-Level Co-occurrence Matrix features correlation  

As Fig. 8 (b) shows most of the control and tumor pair features from this type of analysis are 

mildly correlating with each other. The analysis of the cross correlation between the control and 

tumor features and also among them are showed several cross related covariates (Fig. 9 (b)). 

Uncorrelated features are the SumAverage and then Variance (also Control group SumAverage 

and Variance). GLCM features has, among all the features and all the other texture analysis 

methods, the highest and lowest Pearson correlation coefficient values (Fig. 9 (b)).  
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Figure. 8 (b): GLCM features scatter plots 

 

 

Figure 9 (b): Cross correlation matrix with Pearson correlation coefficients on GLCM control and tumor 

features 

 

4.7.3 Grey-Level Run-Length Matrix features correlation 

 

On Fig. 8 (c) it is conspicuous that the most correlating feature with its control group is the Grey-

level Non-uniformity feature, however we find that on the heatmap (Fig. 9 (c)) GLN is the least 

correlating feature with any other features from this texture analysis. The most positively 

correlating feature with even a number 1 Pearson coefficient is the Run Percentage and the most 

negatively correlating one is the Long-Run Emphasis. 
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Figure. 8 (c): GLRLM features scatter plots 

 

 

   Figure 9 (c): Cross correlation matrix with Pearson correlation coefficients on GLRLM control and 

tumor features 

 

4.7.4 Gray-Level Size Zone Matrix features correlation 

 

Figure 8 (d) shows all the 13 data set correlation between control and tumor group. The most 

correlating one with each other are the Zone Size Variance, the Large Zone Low and High Grey-

Level Emphasis. When we take a look at the heatmap as well on Figure 9 (d) we can find that 

Zone Size Variance doesn’t really correlate with any other features in the matrix. 

 

    

    



26 
 

 
  

 

  

  

Figure 8 (d): GLSZM features scatter plots 

 

 

 

   Figure 9. (d): Correlation matrix with Pearson correlation coefficients 

 

To sum up, covariate with Pearson’s correlation test (p>0.05; the P-value is the probability that 

you would have found the current result if the correlation coefficient were in fact zero (null 

hypothesis). If this probability is lower than the conventional 5% (P<0.05) the correlation 

coefficient is called statistically significant.) non correlating features are great for further 

multivariate analysis (for example: in two different logistic models selecting two different groups 

of uncorrelated features).  

 

4.8 Regression  

 

We can find in published articles, literature and studies that the most commonly used analyses 

methods and classifications for radiomics dataset are: logistic regression (L1 or L2), elastic net. 

They are preferred because they are considered as supervised learning methods. It means it is 

defined by its use of labeled datasets to train algorithms that to classify data or predict outcomes 

accurately. 
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Figure 10.: The method of the best subset selection 

 

First, let’s clarify that linear models are one of the simplest ways to predict output using a linear 

function of input features. However, overfitting (when we have large dataset) and underfitting 

(when we have small dataset) can cause easily a problem.[19] 

Linear model with n features for output prediction: 

 

y = 𝛽0 +  𝛽1 ∙ 𝑥1 + ⋯ + 𝛽𝑛 ∙ 𝑥𝑛 + b Eq. 1. 

 

In the 3.5.1 equation shows that 𝛽0 will be slope and b will represent intercept. Linear regression 

looks for optimizing 𝛽0  and b such that it minimizes the cost function.  

Cost function for simple linear model: 

 

∑(yi − yi)
2

𝑀

𝑖=1

=  ∑ (yi − ∑ 𝛽𝑗 ∙ 𝑥𝑖𝑗

𝑝

𝑗=0

)

2
𝑀

𝑖=1

         Eq. 2. 

 

where the dataset has M instances and p features. 

 

Two special linear regression model which are able to reduce complexity and prevent over-fitting 

as the result of a linear regression, are the Lasso and Ridge regression. They are very similar 

methods yet not so similar, let me explain why and which one is the better choice for my thesis. 

[20] 

 

4.8.1 Lasso Regression 

One of the most well-known powerful methods that helps regularization and feature selection of 

the given data is Least Absolute Shrinkage and Selection Operator (LASSO). The Lasso method 

puts a limitation/restrictions on the sum of the values of the model parameters. The sum has to be 
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less than the specific fixed value. This Shrinks some of the coefficients to zero, Indicating that a 

certain predictor or certain features will be multiplied by zero to estimate the target.[42] During 

this process the variables that have non-zero co-efficient after shrinking are selected to be the part 

of the model. It also adds a penalty term to the cost function of a model, with a lambda value that 

must be tuned.[20] 

The cost function of Lasso is: 

 

∑(yi − yi)
2

𝑀

𝑖=1

=  ∑ (yi − ∑ 𝛽𝑗 ∙ 𝑥𝑖𝑗

𝑝

𝑗=0

)

2
𝑀

𝑖=1

+  𝜆 ∑ |𝛽𝑗|

𝑝

𝑗=0

 Eq. 3. 

where β is the coefficient and λ is the shrinkage parameter. 

 

When λ lambda is 0, the equation is reduced and this leads to no elimination of the parameters. 

Increase in λ causes the increase in bias, decrease in λ causes the increase in variance.[42] 

Although Lasso regression seems to be a great choice as a classifier, it still has some 

limitations.[18] It sometimes struggles with some types of data. If the number of predictors (p) is 

greater than the number of observations (n), Lasso will pick at most n predictors as non-zero, even 

if all predictors are relevant. If there are two or more highly collinear variables then Lasso 

regression select one of them randomly which is not good for the interpretation of data. [36] 

 

4.8.2 Ridge Regression 

In Ridge or L2 regression, the cost function is altered by adding a penalty equivalent to square of 

the magnitude of the coefficients 

 

∑(yi − yi)
2

𝑀

𝑖=1

=  ∑ (yi − ∑ 𝛽𝑗 ∙ 𝑥𝑖𝑗

𝑝

𝑗=0

)

2
𝑀

𝑖=1

+  𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=0

 Eq. 4. 

where β is the coefficient and λ is the shrinkage parameter. 

 

Ridge regression penalizes the β coefficients for being too large, but it doesn’t shrinks the 

coefficient to zero only close to it. It helps to reduce the model complexity and multi-collinearity. 

Multicollinearity is a situation that occurs when independent variables are highly correlated. This 

is the case when we apply Ridge regression to our data. Compared to Lasso this regularization 

term will decrease the values of coefficients but unable to force them to zero. If the number of 
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predictors is greater than the number observations it is capable of selecting more than n relevant 

predictors. [35] Ridge regression isn’t preferable when the data contains huge number of features 

out of which only few are actually important, as it might make the model simpler but the model 

built will have poor accuracy. Hence, this model is not good for feature reduction. [42] 

4.8.3 Elastic net 

Lasso regression is a great algorithm for variable selection with high dimensional data, however 

sometimes it over regularize the data. The solution for the problem is a third type of regression 

method is the Elastic net. It includes both L1 and L2 norm regularization terms and combine the 

penalties of both Ridge and Lasso Regression. The elastic net method improves on Lasso’s 

limitations, i.e., where Lasso takes a few samples for high dimensional data, the elastic net 

procedure provides the inclusion of “n” number of variables until saturation. [43] 

Take a look at equation Eq. 6. [44] We multiply the L2 norm by 1 - α, multiply the L1 norm by α, 

and add these values both up. We multiply this value by lambda and add it to the sum of squares. 

Alpha here can take any value between zero and one: 

• when alpha is zero, the L1 norm becomes zero, and we get ridge regression 

• when alpha is one, the L2 norm becomes zero, and we get LASSO 

• when alpha is between zero and one, we get a mixture of ridge regression and LASSO.[44] 

Elastic net’s cost function with the L1 and L2 loss: 

 

∑(yi − yi)
2

𝑀

𝑖=1

=  ∑ (yi − ∑ 𝛽𝑗 ∙ 𝑥𝑖𝑗

𝑝

𝑗=0

)

2
𝑀

𝑖=1

+  𝜆1 ∑ |𝛽𝑗|

𝑝

𝑗=0

+ 𝜆2  ∑ 𝛽𝑗
2

𝑝

𝑗=0

 Eq. 5. 

 or as the following format: 

∑(yi − yi)
2

𝑀

𝑖=1

=  ∑ (yi − ∑ 𝛽𝑗 ∙ 𝑥𝑖𝑗

𝑝

𝑗=0

)

2
𝑀

𝑖=1

+  𝜆 (𝛼 ∑ |𝛽𝑗|

𝑝

𝑗=0

+  
1 − 𝛼

2
∑ 𝛽𝑗

2) 

𝑝

𝑗=0

 Eq. 6. 

 

,where β is the coefficient and λ1 and λ2 is the Lasso and Ridge shrinkage parameter and α is the 

mixing parameter between ridge and Lasso. 

Groupings and variables selection are the key roles of the elastic net technique. Elastic Net 

Regression encourages group effect in case of highly correlated variables. The elastic net technique 

is most appropriate where the dimensional data is greater than the number of samples used. 
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4.8.4 Lasso – Ridge – Elastic net Comparison 

Ridge, Lasso, and elastic net regularization are all methods for estimating the coefficients of a 

linear model while penalizing large coefficients. The following illustration will clarify why Lasso 

Regularization leads to feature selection, why Ridge only reduces the coefficients close to zero but 

never exactly zero and why Elastic Net Regularization is the best of both words. 

 

Figure 11.: Compering penalty of the LASSO(blue) and Ridge(green) and Elastic net(red) (β penalty)[45] 

 

On the Figure 11 the plotted constraint regions of three cost function of the Lasso and the Ridge 

regression and Elastic net. The illustration compares the shapes of the ridge, LASSO and elastic 

net penalties. As the elastic net penalty is somewhere between the ridge and LASSO penalties, it 

looks like a square with rounded sides.   
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5. Results and evaluation 

5.1 Clinical characteristics 

The restricted dataset contains 77 patient’s data. All the MR images were obtained from the Axial 

plane. Thus, a total of 77 patients were enrolled in this thesis, including 50 males and 27 females 

(minimum age years, maximum age years, median age 60 years.) 47 of them were diagnosed with 

Glioblastoma Multiforme on the right hemisphere if the brain and 30 of them were diagnosed with 

Glioblastoma Multiforme on the left hemisphere of the brain. All the patients were treated with 

External Beam Therapy. 

Sex 
Female: 27 (35.1%) 

Male: 50 (64.9%) 

Age 

Mean: 58 

Median: 60 

Minimum: 17 

Maximum: 84 

Tumor location 
Right: 47 (61.0%) 

Left: 30 (39%) 

Radiation Therapy Type External Beam 

Radiation Therapy Site Primary Tumor Field 

MR plane Axial 

Table 4.: Clinical characteristics of the cohort of the patients (Restricted dataset) 

 

5.2 LASSO classification results 

In this subchapter I am going to represent the results of my analysis with Lasso Classification for 

each of the texture analysis group separately. Each curve on the following graphs corresponds to 

a variable. The feature variables are separated by sides. The response variable is the Tumor (1) 

and Control (0) vector depending on which side of the brain has the Glioblastoma Multiforme.  

Speaking in general, the plot shows the nonzero coefficients in the regression for various values 

of the Lambda regularization parameter. Larger values of Lambda appear on the left side of the 

graph, which means more regularization, resulting in fewer nonzero regression coefficients.[32] 

The dashed vertical lines represent the Lambda value with minimal mean squared error. The upper 

part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in 

the regression, as a function of Lambda.  
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For small values of Lambda (toward the right in the plot), the coefficient values are close to the 

least-squares estimate. 

The plot shows the path of its coefficient against the L1-norm of the whole coefficient vector at as 

λ varies. The axis below indicates the number of nonzero coefficients at the current λ, which is the 

effective degrees of freedom (df) for the Lasso. 

5.2.1 Global features 

From the feature extraction, in the Global function case, we get 6 output values from the MATLAB 

program: Variance, Skewness and Kurtosis for both left and right sides. As the classification 

results show us (Fig. 12 (a)), from these 6 values 3 are nonzero values which include 2 features 

the Skewness of the right side (green) and left side (orange) of the brain and the Kurtosis only for 

the right side (blue).   

To concretize the above mentioned general description of the graph, Fig. 12 (a) shows on the upper 

part 6 degress of freedom however only 3 appreciable from the zero line. Also we can find that a 

larger value of Lambda resulting a fewer nonzero coeffiecient which in this case is the right brain 

side Skewness. 

 

 

Figure 12 (a): LASSO classification result from Global feature extraction  

The Skewness defined as (adapted from [3] ): 

𝑠 =  σ−3 ∑(𝑖 −  𝜇)3𝑝(𝑖)

𝑁𝑔

𝑖=1

 

𝑝(𝑖) =
𝑃(𝑖)

∑ 𝑃(𝑖)
𝑁𝑔

𝑖=1

 

Eq. 7. 
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,where Ng  represents the number of gray-level bins set for P, and P(i) represent the number of 

voxels with gray-level i. 

 

5.2.2 GLCM features 

In the case of the Gray Level Co-Occurrence Matrix (GLCM) texture analysis, we gain 18 features 

from the calculation and there are two features with nonzero coefficient value, the ‘Sum Average’ 

for both left and right side of the brain and the Variance for the right side as well (Fig. 12 (b)). 

On Figure 12 (b) we can see that Lasso regression retains two nonzero coefficients 

as Lambda increases (toward the left of the plot), and these two coefficients (SumAvarage, 

Variance) reach 0 at about the same Lambda value. The Lasso plot shows two of the coefficients 

becoming 0 at the same value of Lambda, while another coefficient remains nonzero for higher 

values of Lambda. In general, Lasso tends to drop smaller groups, or even individual predictors, 

this is a general pattern for L1 regression. 

 

Figure 12 (b): LASSO classification result from GLCM feature extraction 

  

The Sum Average texture feature is defined as (adapted from [3] ): 

 

sum average =
1

𝑁𝑔 × 𝑁𝑔
∑ ∑[𝑖𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

+ 𝑗𝑝(𝑖, 𝑗)]

𝑁𝑔

𝑖=1

 Eq. 8. 
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,where Ng  represents pre-defined the number of quantized gray-level bins set in V, and P(i,j) 

represents the number of 3D zones of gray-levels i and of size j in the voxel. 

 

5.2.3 GLRLM features 

In the case of the Gray Level Run-Length Matrix, the RLV, the Run- Length Variance texture 

feature for both sides was the only non-zero coefficient (Fig. 12 (c)) The graphs shows that the 

number of nonzero coefficients in the regression increases with the Lambda values reduction.  

 

Figure 12 (c): LASSO classification result from GLRLM feature extraction  

 

The Run-Length Variance (RLV) defined as (adapted from [3]): 

 

RLV =
1

𝑁𝑔 × 𝐿𝑟
∑ ∑ (𝑗𝑝(𝑖, 𝑗) −

𝐿𝑟

𝑗=1
𝜇𝑗)2 

𝑁𝑔

𝑖=1
 

𝜇𝑗 = ∑ 𝑗 ∑  
𝑁𝑔

𝑖=1
𝑝(𝑖, 𝑗)

𝐿𝑧

𝑗=1
 

Eq. 9. 

 

,where Ng  represents pre-defined the number of quantized gray-level bins set in V, and P(i; j) 

represents the number of 3D zones of gray-levels i and of size j in the voxel, Lr represents the 

length of the longest run of any grey level in V. 

5.2.4 GLSZM features 

In case of the Gray-Level Size Zone Matrix just like in the previous case we got one non-zero 

coefficient. It is the ZSV also known as Zone-Size Variance for both sides. (Fig. 12 (d)) 
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Figure 12 (d): LASSO classification result from GLSZM feature extraction 

 

The Zone-Size Variance (ZSV) defined as (adapted from [3]): 

 

ZSV =
1

𝑁𝑔 × 𝐿𝑧
∑ ∑ (𝑗𝑝(𝑖, 𝑗) −

𝐿𝑧

𝑗=1
𝜇𝑗)2 

𝑁𝑔

𝑖=1
 

𝜇𝑗 = ∑ 𝑗 ∑  
𝑁𝑔

𝑖=1
𝑝(𝑖, 𝑗)

𝐿𝑧

𝑗=1
 

Eq. 10. 

 

,where Ng  represents pre-defined the number of quantized gray-level bins set in V, and P(i; j) 

represents the number of 3D zones of gray-levels i and of size j in the voxel, Lz represents the size 

of the largest zone of any gray-level in V. 

5.2.5 All features 

At last, I would like to interpret a plot. In this case the response dependent variable of the Lasso 

regression was the vector of vital status, and the independent variables were all the feature from 

all the four texture analysis.  

Figure 12 (d) shows 4 main feature with a nonzero coefficient, these four are: Run-length Variance 

and Zone Size Variance for both the control and tumor group. 
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Fig. 12 (d): LASSO classification result for all the features 

All in all, we tried to determine the strongest predictors, with the interpretation of the plots as 

evidence that variables that enter the model early are the most predictive and variables that enter 

the model later are less important. 

We have four major texture features which are both non-zero for both side of the brain, therefore 

comparable their outcomes: the Skewness, the Sum Average, the Run-length Variance and the 

Zone -Size Variance. These features can be used for further analysis and evaluation for survival 

model such as Random Forest or Cox model, or to calculate the receiver operating characteristic 

curve (ROC) and AUC curves. 
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6. Conclusion 

This thesis shows that glioblastoma multiforme brain one-side-tumor and the normal -side- brain 

as a control-group differences can be observed using non-invasive diagnostic imaging through 

textural analysis. 

In the beginning of my thesis I separated and segmented the MRI scans manually. Nowadays there 

are a lot of semiautomated and automated methods for supervised segmentation, which can lead 

to improvement in the evaluation. Reducing the need for manual user input in the workflow is also 

an importance in the development of computer-aided diagnosis through machine learning or AI. 

Also, I was only working with the texture analysis for feature extraction, however as I mentioned 

above, there are several other ways for radiomics signature.  

This thesis is focusing on to introduce texture analysis and 3 kinds of regression for feature 

selection. To purpose was to show how the Lasso classification model works for feature selection 

as well. From the applied technique, the results give us two features, Zone Size Variance and Run-

Length Variance, which are probably to best to use in further evaluation, survival models etc.   A 

well-chosen classifier which leads to the best subset for the large dataset can predict very 

effectively the overall survival.  

Radiomics analysis requires a huge dataset, however, the number of patients included in the thesis 

cohorts did not provide sufficient statistical power to enable evaluation of the relationship between 

textural parameters and overall survival. 
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