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Introduction 

Functional magnetic resonance imaging (fMRI) enables the indirect functional 

investigation of the brain based on changes in the brain metabolic invoked after neural 

activation [1]. Nearly all fMRI studies are performed using blood oxygenation level-

dependent (BOLD) contrast reflecting the total amount of deoxygenated hemoglobin. In 

fMRI analysis, the identification of the activated regions in the brain is commonly based 

on the general linear model (GLM) framework [2]. The change in the BOLD signal 

intensity evoked by a brief neuronal activity is mathematically described via the 

hemodynamic response function (HRF). GLM sets up an estimation of the BOLD 

response using a prespecified HRF model then fits it to the observed fMRI time courses. 

Accurate modeling of the HRF is still of great interest in fMRI research, employing 

various models proposed to achieve this. The emergence of multiband techniques has 

enabled temporal sampling rates in fMRI acquisition to be significantly higher, even with 

high-resolution whole-brain coverage [3], [4]. However, the higher temporal sampling 

can also change the sensitivity to the HRF model misspecification due to the higher 

number of samples obtained in a single response. The aim of the current thesis is to 

investigate the interaction between the use of multiband techniques and the choice of the 

HRF model in GLM fit. For this purpose, I evaluated fMRI datasets obtained with 

standard EPI sequence with 2-fold in-plane acceleration (GRAPPA) and multiband EPI 

with two different multiband factors of 4 and 6 using five commonly applied HRF models.  
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CHAPTER 1 

Principles of BOLD fMRI 

This chapter is intended to provide a short overview of BOLD fMRI and methods for 

performing standard BOLD fMRI experiment.  

1.1 The BOLD contrast 

Unlike methods measuring the direct consequences of neuronal activities, fMRI allows 

the indirect functional examination of the brain based on the vascular response to the 

neuronal activation. The activation of a neuron is an energy-consuming process. Due to 

the intensified energy and oxygen requirements, neuronal activation is followed by 

increased local blood flow as a consequence of a neurohemodynamic coupling between 

the two systems. The specific magnetic properties of the blood make the functional 

imaging of the brain possible via magnetic resonance imaging.  

Nearly all fMRI studies are performed using BOLD contrast [5]–[7]. In BOLD fMRI, the 

functional contrast is based on the effects of the local magnetic susceptibility reflecting 

the total amount of deoxygenated hemoglobin. Normally, the blood contains a 

considerable amount of hemoglobin. Hemoglobin has great importance in our 

metabolism; these molecules perform 98.5% of the oxygen-transport in the blood. Every 

hemoglobin molecule has magnetic properties that differ according to whether or not it is 

bound to oxygen [8]. The oxygenated hemoglobin (oxyhemoglobin) is diamagnetic, while 

the deoxygenated hemoglobin (deoxyhemoglobin) is paramagnetic.  

During the fMRI scanning, the diamagnetic oxyhemoglobin does not modify the 

surrounding magnetic field remarkably. In contrast, the presence of paramagnetic 

deoxyhemoglobin causes a considerable local field inhomogeneity resulting in more rapid 

decay of transverse magnetization (T2*) of nearby tissues. The MR pulse sequences 

sensitive to T2* should show more MR signals where blood is highly oxygenated (i.e., 

less deoxygenated) and less MR signals where blood is highly deoxygenated [9]. Thus, 

the intensity of the signal detected in BOLD fMRI (i.e. BOLD signal) reflects the total 

concentration of the deoxygenated hemoglobin over time.  



3 
 

When a neuron is activated, its energy consumption increases. To satisfy the energy 

demand, oxygen-rich blood is carried there. The oxygenated hemoglobins sweep out and 

replace the deoxygenated ones leading to the lower concentration of the 

deoxyhemoglobin. Owing to this effect, the local field inhomogeneity decreases inducing 

a small increase (few, 1-5%) in T2* relaxation time and, therefore, in MRI signals. 

However, the BOLD response has an amplitude comparable to the noise in the data, 

raising difficulties in the identification of the signal changes evoked by the stimulus. The 

goal of the BOLD fMRI experiments is to detect such changes in the signal and to make 

inference about the underlying neuronal activation.  

Functional MRI has a major role in neuroimaging. The popularity of fMRI arises from its 

various advantages (Figure 1) including widespread availability, non-invasive nature, its 

potential to provide a good balance of spatial and temporal resolution, and its 

appropriateness for a wide range of experimental questions. These features made fMRI a 

powerful technique for both research and clinical applications. 

 

Figure 1. Temporal and spatial resolution of different functional brain mapping methods. 

Abbreviations: MEG = magneto-encephalography; ERP = evoked response potentials; fMRI = 

functional magnetic resonance imaging; PET = positron emission tomography (adapted from [2]). 
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1.2 The hemodynamic response 

The change in the BOLD signal evoked by a brief neuronal activity is called the 

hemodynamic response. As mentioned previously, BOLD fMRI captures the changes in 

the concentration of deoxygenated hemoglobin from the examined brain region. The 

amount of deoxyhemoglobin depends on the oxygen extraction of the active neurons and 

the changes in blood flow and blood volume.  

Whereas cortical neuronal responses occur within tens of milliseconds following a 

sensory stimulus, the hemodynamic response is more extended in time. Due to the 

changes in the features of the underlying physiological processes (i.e., blood flow, 

volume, and the deoxyhemoglobin quantity), the hemodynamic response can be divided 

into distinct phases. Immediately after the onset of the neuronal activity, a decrease 

known as initial dip appears in the BOLD signal. The initial dip is related to the transient 

increase in the amount of deoxyhemoglobin attributed to the intensified oxygen 

consumption of the active neurons. The initial dip is ended by an increase of the signal 

due to the increased inflow of oxygenated blood.  More oxygen is transported to the area 

than extracted by the active neurons what results in a local decrease in the quantity of the 

deoxyhemoglobin. The increasing signal intersects the baseline at about 2 s after the onset 

of the neuronal activity. The maximum of the hemodynamic response (peak) occurs 

between approx. 4 and 6 s following a brief neuronal activity. If a neuronal activity is not 

a short-duration event, the peak may be extended into a plateau with slightly lower 

amplitude than the peak [10]. The return of the signal to the initial baseline is 

accompanied by an undershoot during the intensity remains below baseline for a 

prolonged interval. This effect is associated with oxygen metabolism and vascular 

compliance [8]. An idealized hemodynamic response intensity profile is depicted in 

Figure 2.  

To give an approximate description of the hemodynamic response, some adequate 

mathematical functions are employed. These functions are usually called hemodynamic 

response functions (HRF) and correspond to the change in the signal amplitude evoked 

by a stimulus with instantaneous duration and unit intensity. However, the shape of the 

response functions is not identical for the whole population, it can vary across subjects, 

brain regions and stimuli [11] (HRF models are discussed later in Subchapter 1.7.3). 
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Figure 2. Idealized hemodynamic response (adapted from [7]). 

1.3 Resolution of fMRI 

Among neuroimaging techniques, functional MRI provides a good balance of spatial and 

temporal resolution and hence represents an effective technique for a wide range of 

neuroimaging researches [10]. In this subchapter, I will discuss the factors which 

determine the spatial and the temporal resolution of an fMRI experiment.  

1.3.1 Spatial resolution 

The spatial resolution of functional MRI depends on multiple factors. The most obvious 

parameter is the size of the voxel determined by the following scanning parameters: field 

of view (FOV), matrix size, and slice thickness. Although splitting the measured volume 

into smaller spatial elements seemingly should indicate better distinctive functional areas, 

it results in decreased signal-to-noise ratio (SNR) and expanded acquisition time. On the 

other hand, a too low spatial resolution could also raise a significant issue called partial 

volume effect. Singe voxels (even the smallest ones) may contain various tissue types, 

e.g., white matter, grey matter, cerebrospinal fluid, or blood vessel. Therefore, the 

measured intensity will contain signal components from tissues not contributing to the 

BOLD response but to the noise.  

Apart from voxel size, there are additional factors that spatial resolution depends on. 

Since the BOLD signal is controlled by the amount of the deoxygenated hemoglobin, the 

spatial features of the vascular system (capillaries and veins) also determine the available 

spatial resolution. Earlier studies found [12], [13] that the vascular system introduces 

limitations in the spatial resolution of fMRI images. Since blood vessels transporting 
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oxygenated blood to neurons has a specified spatial extent, a filtering effect will appear 

on fMRI activation maps. In the best case, the signal is only acquired from the adjacent 

capillaries of the activated neurons; in the worst case, larger and more distant blood 

vessels may also contribute to the signal. 

In conclusion, the choice of the appropriate spatial resolution for the fMRI experiments 

is not trivial. One should consider the research questions (e.g., the size of the expected 

effect evoked by the experimental manipulation) and the previously described spatial 

characteristics of the BOLD signal. In fMRI measurements, the spatial resolution is 

typically 3-4 mm, though with higher field magnets (7T) 0.5 mm or less may be obtained 

[1], [14]. 

1.3.2 Temporal resolution 

Like in the case of spatial resolution, the sampling rate is not the only factor that 

contributes to the temporal resolution of fMRI. Besides repetition time (TR), the temporal 

features of the BOLD signal are also crucial. Because of the slow underlying 

physiological processes, the course of the hemodynamic response takes more than 10 

seconds to fade away. As a consequence, the measured fMRI data do not present a 

snapshot of the neuronal activity but reflects the prolonged changes in the vascular 

system. Increasing the sampling rate can provide a better approximation of the shape of 

the hemodynamic response, and thus a better understanding of the underlying neuronal 

activity [7].  

1.4 The sources of noise in fMRI 

The most important sources of noise in fMRI measurements are the following [7]:  

• thermal noise of the body and the electronics 

• system noise of the hardware (e.g., scanner drift) 

• head motion 

• physiological processes originating mainly from respiration and heart rate 

• alternation in the BOLD signal related to non-task related brain processes 

• variability in behavioral performance  
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1.5 Functional MRI data acquisition 

There are many valid ways to perform neuroimaging experiments based on fMRI. In the 

following paragraphs, I will review the steps of conventional fMRI experiments 

commonly used in neuroimaging studies. I followed these steps during the processing and 

the evaluation of the data.  

During the experiment, a series of volumes is acquired by imaging the subjects' brains 

while the subjects perform a set of tasks or are exposed to a certain condition. To assure 

that the results of the experiment will be valid, interpretable, and provide information 

about the experimental questions, the design of the experiment is a key factor. The 

experimental design comprises the selection of tasks or conditions and the presentation 

of stimuli that manipulates the experimental conditions over time. When designing a 

study, it is crucial to choose an experimental design which suits the research question the 

most and applying experimental manipulation inducing detectable changes in the signal. 

Due to its T2* weighting (i.e., improved sensitivity toward BOLD contrast) and short 

scanning time, echo-planar imaging (EPI) [15] has become the default fMRI acquisition 

technique. In a standard fMRI experiment, a single volume with a whole-brain coverage 

is obtained every few (2-3) seconds. Through the experiments, more than 100 volumes 

are typically scanned.  

The design of the experiment is set up concerning the research questions. In general, the 

experimental design of fMRI is divided into two major types: block design and event-

related design. This grouping is based on the techniques the stimuli are presented. Block 

design means that stimuli are divided into prolonged task blocks presented to the subject 

in an alternating pattern. A single block contains only one type of task; the duration of it 

is about a few 10 seconds. The strengths of this design are its simplicity and high detection 

power. 

In comparison, event-related designs present short-duration stimuli (events) separated 

with inter-stimulus intervals varying typically from 2 to 20 s. In contrast to the block 

design, the stimuli may be presented randomly rather than alternately.  

Compared to block design, the event-related design enables the application of more 

complex and flexible experimental designs, which contributes chiefly to the experimental 

flexibility and growth of fMRI [16]. This design allows for characterizing the shape and 

the timing of the hemodynamic response providing additional information about the 
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underlying neural and metabolic processes. However, the event-related design generates 

smaller changes in the BOLD signal resulting in reduced detection power compared to 

the block design. Due to the sensitivity to the shape of the hemodynamic response, the 

analysis of an event-related dataset requires careful choice of the applied model for the 

hemodynamic response; otherwise, significant activations may be missed [10]. 

1.6 Preprocessing 

The purpose of fMRI studies is to distinguish small, spatially localized variations in the 

signal evoked by the experimental task. As mentioned in the preceding subchapters, small 

signal changes corresponding to BOLD contrast are embedded in a noisy signal. Series 

of procedures applied prior to statistics to remove such an unwanted variability of data 

and prepare it for statistical analysis are generally called preprocessing. Similar 

preprocessing algorithm steps are commonly implemented in fMRI experiments due to 

their less dependence on the experiment design (e.g., block or event-related design). In 

the following paragraphs, standard preprocessing steps will be reported, which are 

included in most fMRI analysis packages.  

1.6.1 Motion correction 

During fMRI experiments, it is critically important to consider the head motion that can 

introduce severe artifacts into the fMRI analysis. Despite the mechanical restriction (head 

restraint system), a few millimeters displacements could occur even in the case of 

collaborating subjects. In voxel-based fMRI analysis, we assumed that each voxel of the 

time-series is acquired from a unique and unchanging location of the brain. When head 

movements occur during the measurement, violating the assumption, intensity changes 

will appear in the images as an additional noise disturbing the detection of the desired 

response. Motion correction is a standardly applied preprocessing step in fMRI studies. 

Its purpose is to spatially align the successive volumes in the time series as the brain 

would have been in the same position during the whole measurement. 
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1.6.2 Spatial normalization 

Regarding human brains, there is remarkable variability in shape and size. Furthermore, 

the amount of difference may be notably prominent in particular brain regions. This 

phenomenon raises difficulties in the common evaluation of data obtained from different 

subjects. Preprocessing step called spatial normalization has been designed to solve this 

problem. Normalization aims to counteract the variations among individuals by 

transforming the multi-subject dataset into a standard reference space, enabling the group-

level analysis of the dataset. During the transformation, mathematical stretching, 

squeezing, and warping of the images are carried out. A further advantage is that a 

common reference space allows the comparison of the data and the results obtained in 

two or more different studies. A commonly used reference space, called MNI space 

(Montreal Neurological Institute coordinate space) [17], was constructed by the 

researchers of Montreal Neurological Institute based on a dataset involving more than a 

hundred individual anatomical images. 

Since a typical functional image appears undifferentiated and blurry, the use of the more 

detailed anatomical scan as a guide image is beneficial during normalization. To achieve 

this, prior to the normalization, the functional images are mapped on to an anatomical 

image obtained from the same subject. This common process is called coregistration.  

1.6.3 Spatial smoothing 

In fMRI experiments, the application of a low-pass spatial filter is a widespread technique 

in preprocessing. This process is alternatively called smoothing or spatial smoothing. The 

main reason for using spatial smoothing is to remove high-frequency spatial components 

attributed to the noise and as a result of this to enhance SNR. Besides that, spatial 

smoothing can have additional advantages of improving the validity of statistical methods 

by decreasing the number of false positive activations and increasing the normality of the 

error term. The most frequently used spatial filter is the Gaussian filter. In fMRI studies 

owing to the spatial characteristics of the BOLD signal, the typical value of full width at 

half maximum (FWHM) of the kernel is about 5 to 10 mm.   
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1.6.4 Temporal filtering 

In fMRI measurements, additional components of very low frequencies are observed in 

the time series of the measured data. These changes are associated with scanner drift 

arising from the temporal scanner instability. These effects often appear as nearly linear 

increasing or decreasing trends in the signal. This low-frequency noise can disturb the 

detection of the brain response of the experiments. High-pass filtering is a generally used 

approach in attenuating slow drift-like trends. 

1.7 Statistical analysis of fMRI images 

After the preprocessing of the dataset, further analyses are performed to determine the 

brain regions activated by the stimulation. To identify the weak BOLD response in the 

noisy signal, a careful statistical analysis is required. A commonly used approach is the 

hypothesis or significance test. The experimenters set up a research hypothesis that makes 

predictions about the experimental data and a null hypothesis rejecting the former. In 

fMRI, a general research hypothesis is that the experimental manipulation (e.g., a task or 

a particular condition) affects the fMRI signal. The goal of the hypothesis test is to 

evaluate whether the data reflects the effect of the manipulation or the null hypothesis can 

be accepted. 

The output from such a hypothesis-driven analysis is a probability level that the observed 

data could occur under the null hypothesis. Voxels whose probability levels are below a 

threshold probability are declared significant, indicating activation in response to the 

manipulation [10]. Two different types of errors can occur in a hypothesis test. Errors are 

referred to as false positive (or Type I error) when a non-significant effect is labeled as 

significant and false negative (or Type II error) when a significant effect is not identified 

as significant. 

In fMRI experiments, the analysis of the data from multiple subjects typically involves 

two phases performing tests at two levels. These phases are called first- and second- or 

group-level. In the first-level analysis, the effects are tested at the single subject-level. 

The output of the first-level then serves as an input into the group-level analysis. The term 

group-level indicates an across-subjects analysis. Statistical analyses are commonly 

performed voxel-by-voxel in the whole brain referred to as a whole-brain analysis, or in 

a selected area known as the region of interest (ROI) analysis. 
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In fMRI experiments, it is most general to process each voxels’ time course individually 

[2]. This approach is called univariate analysis. It assumes there is no covariance across 

voxels; any observed covariance is considered as noise. However, there exist also 

multivariate methods allowing the joint analysis of all voxels by taking into account the 

spatial relationships across them. In this study, the analysis of the dataset was carried out 

in a univariate way. 

1.7.1 General Linear Model 

General linear model (GLM) analysis denotes a collection of statistical methods. It 

assumes that the observed data series is composed of a linear combination of different 

model factors along with additive Gaussian noise. In fMRI studies, GLM has become the 

prevalent statistical framework; nearly every hypothesis testing is based on GLM. All 

major fMRI statistical packages include routines for performing general linear modeling.  

In fMRI analysis, general linear modeling generates a model of the predicted BOLD 

response and fits that to the observed time series for the whole session. The model consists 

of a linear combination of independent predictions (i.e., regressors or model factors) that 

together predict the expected BOLD response. The basic formula for linear modeling for 

a single voxel is: 

 𝑦(𝑡)  =  ∑ 𝛽𝑖𝑥𝑖(𝑡)𝑛
𝑖=1   +  𝑐 +  𝑒(𝑡)       (1) 

where y(t) is the observed time series; xi(t) represents the i-th regressor, n is the number 

of the applied regressors. The terms βi (i = 1…n) are unknown parameter weights 

reflecting the relative contribution of the corresponding regressors (xi(t)) to the observed 

time series. The letter c expresses a constant term corresponding to the intensity of the 

baseline in the data, and e(t) is the error term unexplained by the model.  

The relationship between a stimulus and its BOLD response is commonly modelled by 

convolving the stimulus function with the HRF. The use of two or more types of stimulus 

as well as a complex HRF model comprising multiple basis functions may appear in the 

equation as additional regressors. (Subchapter 1.7.3 describes the HRF models and their 

basis functions in more detail.) 
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Equation 1 is typically expressed in matrix formulation by 

 

where Y is a vector containing the measured data, X is generally referred to as the design 

matrix containing time courses of regressors by columns, β is a vector containing the 

parameter weights (i.e. parameter vector), and e is called error vector containing the 

unexplained component of the fMRI signal. The constant term (introduced in Equation 2) 

is involved in the design matrix by an additional column vector of ones (x0), the   

parameter weight (β0) corresponds the baseline level of the measured data.  

This equation system (Equation 2) is typically overdetermined, because the number of 

observations (i.e. number of successive volumes in the time series) is substantially higher 

than the number of regressors. A widespread solution of such an overdetermined system 

(i.e.  of linear equations) is to assess the combination of βi values that minimize the sum 

of the squared residuals. GLM is usually applied in a univariate way; the parameter 

weights, the constant term, and the residual term are determined independently for all 

voxels. 

1.7.2 T-statistics 

The calculated parameter weights only approximate the intensity of the relative signal 

induced by a given experimental manipulation. To determine whether a particular voxel 

exhibits activation for a specific manipulation or there is a significant difference between 

the effects of different manipulations, a suitable statistical method is needed. A common 

approach is to compare the effect size to its standard error [2]. This method is called t-

statistics resulting in a so-called t-score (or t-value): 

𝑇 =
effect size

standard error
 

(2) 

(3) 
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The higher the magnitude of t-score, the more significant the effect is. To each t-score a 

p-value can be assigned which expresses the probability that the results are occurred by 

chance. P-values are generally determined by comparing the results with a t-distribution 

with the proper degree of freedom (i.e. number of independent observations). Voxels 

whose probability does not exceed a threshold probability are considered to be 

statistically significant (i.e. activated).  

T-statistic can be applied in the first and the second-level voxelwise analyses. To visualize 

the outcome of the statistical test, the significant (i.e., activated) voxels can be displayed 

on statistical maps of the brain activation using color coding according to the t-score or 

the p-value for each voxels. The statistical map is usually displayed on anatomical images. 

In fMRI studies, t-statistic is also commonly used method for ROI-based analysis [18].  

1.7.3 Choice of the HRF model 

As mentioned in the previous chapter, the shape of the hemodynamic response may differ 

depending on the specific circumstances, e.g., stimuli, subjects, and the selected brain 

region. The ability to handle such a variation is controlled by the applied HRF models. In 

statistical packages for fMRI data analysis, several HRF models are available. A popular 

approach is to model HRF with a single function with a fixed shape. However, to improve 

the flexibility of the fitting, HRF can also be modeled as a linear combination of two or 

more basis functions [19]. 

The more basis functions involved in the GLM fit, the more flexible the model is in 

estimating an unexpected HRF shape. However, the increased number of estimated 

parameters may imply more errors in assessing them. Moreover, it is simpler and 

statistically more powerful to interpret the results of the estimation on a single parameter 

than multiple parameters. Because of these problems, a single, rigid model referred to as 

canonical HRF (CAN) is the most common choice for GLM. The model used in the 

SPM12 toolbox (Wellcome Trust Centre for Neuroimaging, University College, UK) was 

defined as a specific combination of two gamma functions. In the case of canonical HRF, 

only the amplitude of the response is allowed to vary. However, such a rigid model may 

not assess the shape of the hemodynamic response correctly for much of the brain [20], 

[11], [21]. Even a small amount of mismodeling can result in a remarkable loss of the 

statistical power and induces an increase in false positive rate [22], [23].   
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The use of canonical HRF plus its temporal and dispersion derivatives (Figure 3) can 

increase the ability to approximate responses that are shifted in time or show different 

activation duration compared to the canonical HRF [24], [25]. The time derivative allows 

the onset of the response to change by plus or minus a second, and the dispersion 

derivative allows a similar amount of variance in the length of the hemodynamic 

response. 

 

Figure 3. SPM built-in basis functions of canonical HRF plus its temporal and dispersion 

derivatives. 

As another option, the gamma basis functions (Figure 4) are an interesting choice as the 

canonical HRF is defined as a specific combination of those functions. 

 

Figure 4. SPM built-in basis functions of 3-ordered gamma functions. 
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Instead of making an assumption about the shape of the HRF, estimating parameters 

independently for every timepoint following the stimulus can also be an attractive 

method. This remarkably flexible approach is called finite impulse response (FIR) model 

[26]. FIR basis set (Figure 5) consists of a series of n distinct unit-magnitude impulses 

delayed in time by i *TR, where i = 1, 2, … n.  The parameter weight of a given basis 

function corresponds to the value of the hemodynamic response at the given time point. 

Unlike previously mentioned models, FIR makes no assumption about the shape of the 

HRF, all parameter weights can take any value. Thus, FIR is able to estimate a wide range 

of HRF shapes. 

Figure 5. FIR basis set involving 20 basis functions. The basis functions correspond to unit 

impulses delayed in time by t = 1, 2, … 20 TRs (adapted from [27]). 

1.8 The Goodness of Fit measures 

Similar to other statistical methods, GLM analyses are controlled by the particular choice 

of the model [16 - 17]; thus, the quality of the applied model can have a considerable 

impact on the sensitivity and specificity of statistical tests [18 – 19]. However, the 

assessment of the model quality has not become a standard practice in the application of 

GLMs for fMRI. A recently published SPM12 toolbox has been aimed to provide a new 

package for model assessment, comparison to control model quality and selection termed 

MACS [25]. 
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Calculation of goodness of fit parameters is a relatively simple approach to quantify the 

model quality (i.e. how well a model describes a given fMRI signal). The measure aims 

to determine how well a given model explains the variations in the dataset in question. A 

regularly applied tool for assessing the goodness of fit of the model is the coefficient of 

determination (R2) [22]. R2 is defined as the ratio of the magnitude of signal variance 

explained by the model to the magnitude of the total observed signal variance:  

  𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
= 1 −  

𝑅𝑆𝑆

𝑇𝑆𝑆
  (4) 

where RSS is the residual of sum of squares ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1 ,  ESS is the explained sum 

of squares ∑ (𝑦̂𝑖 − 𝑦̅)2𝑛
𝑖=1  and TSS is the total sum of squares ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1 , such that 

TSS=RSS+ESS, 𝑦𝑖 is the i-th data point in the measured time course, 𝑦̂𝑖 is the predicted 

data (i.e. fitted BOLD signal) for the i-th data point, 𝑦̅ is the mean signal of the time 

course, n is the number of data points. In general, the nearer R2 is to 1, the better the model 

describes the given dataset. However, R2 does not account for the number of variables 

(e.g. number of basis functions) involved in the model, thus R2 always increases when 

other variables are added into the model. To avoid overfitting and allow for the 

comparison between different models, improved goodness of fit indicator is available: the 

adjusted coefficient of determination [22]: 

  𝑅𝑎
2 = 1 −

𝑅𝑆𝑆/𝑑𝑓𝑟

𝑇𝑆𝑆/𝑑𝑓𝑡
  (5) 

where the residual degrees of freedom dfr = n – p (p is the number of model factors) and 

the total degrees of freedom dft = n – 1 are involved to adjust the R2 for the number of 

variables contained by the model. Owing to the addition of the penalty term as the model 

complexity increases, a higher value of adjusted R2 indicates higher goodness of fit. 

Whereas the magnitude of R2 ranges between 0 (no fit) and 1 (perfect fit), the adjusted R2 

can be negative.  
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CHAPTER 2 

Simultaneous Multislice Imaging in fMRI 

Functional MRI measurements mostly rely on the conventional 2D gradient-echo EPI 

sequence with TR in the range of 2 to 3 s. Regarding the slowness of the BOLD signal, 

there may seem to be no need for higher sampling rate in time. Despite that, acceleration 

techniques have been in the focus of interest since their appearance in fMRI 

measurements. The reason lies in the several advantages provided by higher temporal 

resolution. First of all, faster sampling of BOLD response has a great potential for 

increasing statistical power [24], as well as improving temporal modeling of brain 

dynamics measured with fMRI [3]. The higher sampling rate can reduce temporal aliasing 

of physiological noise [28]–[30] and allow for advanced characterization of 

hemodynamic responses. In addition, smaller voxel size can also be achieved without 

increasing the applied TR: higher number of thin slices can be acquired to cover the whole 

brain without increase in scan time. 

Recently, simultaneous multislice (SMS) or multiband imaging technique using 

multiband excitation has enabled a considerable advancement in accelerating EPI 

acquisition [31], [32]. SMS technique, based on the simultaneous excitation and 

acquisition of multiple slices using multiband RF pulses, allows the acceleration of the 

acquisition along the slice direction [33], [34]. An excellent review [35] provides a 

comprehensive snapshot of SMS methodology, with emphasis on excitation, 

reconstruction and applications. The increase of the temporal resolution and thus the scan 

time reduction is proportional to the number of slices collected at the same time, which 

is commonly referred to as multiband factor (MB factor) or SMS acceleration factor. 

Several studies reported that the application of 2D EPI with MB factor 2 to 12 can provide 

high quality scans providing reduction in scan time for whole brain and increased 

temporal resolution [3], [4], [36], [37].  

However, the benefit of multiband imaging derived from the shortened TR is achieved at 

the cost of SNR degradation. Unlike parallel imaging, there is no intrinsic SNR reduction, 

the decrease is only associated with the g–factor noise of the reconstruction and the 

incomplete longitudinal relaxation at shorter TRs [32].  
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Several studies have investigated the benefit of multiband imaging in functional MRI. 

Numerous studies presented that acquiring a higher number of data points using 

multiband imaging can improve statistical power [3], [38]. Preibisch et al. [39] found that 

multiband EPI with MB factor 4 leads to a clear increase in sensitivity for resting-state 

fMRI, but also observed that higher MB factors induced random artifacts. Todd et al. [40] 

evaluated the performance of multiband protocols with acceleration factors 2, 4, and 6 for 

task-based fMRI dataset and demonstrated considerable gains in BOLD sensitivity 

compared to MB factor 1. They also showed that the MB factor for optimal sensitivity 

depends on the brain region and the reconstruction method. Demetriou et al. [41] 

performed a comprehensive test of multiband acquisition protocols and found that its 

statistical benefit depends on various factors, including the nature of the investigation 

(resting-state vs. task-based), the experimental design, the particular statistical outcome 

measure, and the type of analysis used.  

Although the effect of the multiband techniques on fMRI experiments has been examined 

from various aspects, the interaction between the use of multiband imaging and the choice 

of the HRF model has not been evaluated yet. However, the higher sampling rate can also 

change the sensitivity to the HRF model inaccuracy due to the higher number of samples 

measured in a single response. In this work, I aim to investigate this problem by 

performing GLM fit on fMRI dataset acquired with standard EPI sequence with 2-fold 

in-plane acceleration (GRAPPA) and multiband EPI with two different multiband factors 

of 4 and 6 applying five frequently used HRF models.  
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CHAPTER 3 

Methods 

The utilized dataset was originally acquired for an earlier study [42] aimed to determine 

the efficiency of SMS sequences with different measurement durations. The design and 

the acquisition protocol of the experiment enabled the resulting dataset to be involved in 

this study in accordance with the previously introduced aims. The fMRI measurements 

were obtained with standard EPI and EPI with two different multiband protocols; the 

experimental design was event-related, providing high sensitivity to the shape of the HRF. 

The purpose of this chapter is to discuss further details about the experiment, as well as 

the preprocessing and data analysis steps employed in this study. All calculations were 

performed SPM12 toolbox and custom codes running on MATLAB 2015a (The 

MathWorks Inc., Natick, MA, USA). 

3.1 Data acquisition 

Twenty-one healthy, right-handed volunteers were involved in this study. The 

measurements were performed on a 3 T Siemens Magnetom Prisma scanner (Siemens 

Healthcare GmbH, Erlangen, Germany) equipped with 64-channel receive-only head coil 

arrays at the Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian 

Academy of Sciences.  

High-resolution T1-weighted 3D MPRAGE anatomical image (TR = 2300 ms, echo time 

(TE) = 3 ms, flip angle (FA) = 9°, field of view (FOV) = 256 mm, matrix size 1×1×1 mm) 

and task-based 2D gradient-echo EPI functional scans were acquired during the 

experiment. The functional measurements consisted of three different protocols: a 

standard EPI sequence with twofold in-plane GRAPPA acceleration [43], henceforth 

referred to as MB1 (i.e. without multiband), and two multiband acquisitions using the 

blipped-CAIPI approach [32]. The applied MB factors were 4 (MB4) and 6 (MB6) with 

TRs of 1 s and 0.41 s and flip angles of 64°and 45°, respectively. For MB1, TR was 2 s 

and the flip angle was 79°. The spatial resolution (matrix size = 3x3x3 mm) and the echo 

time (TE = 30 ms) were common to all functional scans. The sequence parameters of the 



20 
 

functional scans are summarized in Table 1. Both multiband datasets were reconstructed 

using LeakBlock kernel [44] to reduce interslice leakage artifacts.  

However, four volunteers were excluded owing to excessive head motions (n=1) and 

missing scans (n=3). Thus, the final fMRI sample consisted of 17 participants (age: mean 

= 21.7, SD= 2.1).   

 MB1 MB4 MB6 

TR (ms) 2000 1000 410 

TE (ms) 30 30 30 

FA (°) 79 64 45 

Total scan volumes 336 672 1638 

Table 1. Scanning parameters (adapted from [42]) 

3.2 Task paradigm  

As mentioned previously, the applied task paradigm was event-related. The volunteers 

performed a visual task comprised of viewing images of faces, viewing images of houses 

and viewing images of bodies. The presented images were grayscale, framed with a 

circular contour and displayed centrally. The task also included a baseline condition in 

which the participants gazed at a fixation point.  

Each participant underwent three runs acquired with the scanning protocols introduced 

above (MB1, MB4 and MB6). The order of the runs was counterbalanced and randomized 

across the original twenty-one subjects. Each image stimulus was presented for 1 s with 

an intertrial interval of 2, 5 and 7 s in ~1.5 min long task blocks with six of each stimulus 

type per block. Each run included 5 task blocks separated by 25 s rest periods, as well as 

additional 30 s rest periods before the first block and after the last block.  The presentation 

order of the stimuli and the intertrial interval length varied were pseudorandomized in 

each of the blocks. The same stimuli and design were applied for each subject and run.  

To define the location of the regions of interest (ROI) involved in the further analyses, 

additional independent functional localizer scans were also obtained for each participant 

with acquisition parameters identical to MB1. Details about the experimental design of 

the functional localizer measurements can be found in [42]. 
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3.3 Preprocessing 

I performed standard preprocessing on each functional dataset using SPM12 toolbox. The 

utilized preprocessing steps were the following: motion correction, normalization, spatial 

smoothing, high-pass temporal filtering and prewhitening. The applied SPM routines will 

be introduced in the next paragraphs. 

For the motion correction of the functional data, I used the SPM Realign routine. The 

algorithm carries out a six-parameter rigid body spatial transformation. Rigid body 

transformation assumes that the shape and the size of the brain do not vary during the 

experiment. setsTo eliminate the effect of head motion, the algorithm realigns the time-

series of brain volumes to a reference image by a combination of three translations (i.e., 

movement along the x-, y- and z-axes) and three rotations (i.e. the amount of rotation 

about x-, y- and z-axes). The six parameters per volume were determined by using the 

least-squares approach. After realignment, the volumes are resliced corresponding to the 

calculated parameters such that they match the reference volume. 

Prior to the normalization step, I performed the coregistration of the anatomical scan with 

the functional images. For this purpose, I used the SPM Coregister routine using rigid-

body model similar to the realign routine.  

I applied the SPM Normalise routine for spatial normalization. During the process, the 

anatomical and the coregistered functional datasets were transformed into MNI space. 

The algorithm consists of two components. In the first part, the program estimates a 

nonlinear deformation field that best overlays the template of the MNI space to the 

individual anatomical image. The result is a set of warps, which can be applied to the 

anatomy and the functional images to transform them into the reference space. 

Deformation is calculated individually for every subject. Then the actual writing of the 

spatially normalized data is executed by the previously estimated deformation.  

I smoothed the data with Gaussian filter implemented in SPM Smoothing routine. The 

full width at half maximum (FWHM) of the applied kernel was 6 mm in all directions. 

Besides the spatial smoothing, a 128 s high-pass temporal filter was performed on the 

data.  

An additional preprocessing step was also included to remove temporal autocorrelation 

(i.e., correlation in the error term) in the fMRI time courses. This effect may arise from 

the low-frequency scanner drift, oscillatory noise of the cardiac pulse and the respiration 
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and residual movements remaining after imperfect motion correction [45]. The presence 

of temporal autocorrelation in the signal can increase the likelihood to detect false 

positives at first level, which can also be expected to propagate to the group-level [46]. 

Prewhitening is a common approach to reduce this effect by modeling the temporal 

autocorrelation. However, increasing sampling rate also increases the temporal 

autocorrelation of the fMRI time series and the utilization of more complex models for 

prewhitening is required [30], [47]. It has been demonstrated in recent studies that SPM 

FAST routine provides an enhanced prewhitening for fMRI datasets even acquired with 

multiband protocols [46], [47]. The algorithm of FAST models temporal correlation with 

an extended basis set of covariance matrices (for further details see [47]). In this study, I 

also used the FAST routine implemented in SPM12 to prewhiten the functional datasets.  

3.4 GLM and the estimated parameters 

In this study, I analyzed the functional datasets in a GLM framework.  Five commonly 

used SPM built-in HRF models were independently fitted to each functional dataset 

(already detailed in Section 1.7.3): 

a. canonical HRF (CAN) 

b. canonical HRF plus its temporal derivative (TD) 

c. canonical HRF plus its temporal and dispersion derivatives (DD), 

d. finite impulse response model (FIR) 

e. 3-order gamma functions (GAMMA).  

The selection of the investigated HRF models was based on their frequency in fMRI 

studies, as well as availability in SPM12. It was also essential to choose models providing 

different flexibility by using different sets of basis functions varying in number and shape. 

The more complex the model is (i.e., including more basis functions), the more parameter 

estimates are yielded through the GLM fit; however, the interpretation of multiple 

parameters may not be trivial. For simplicity, I performed further statistical analyses using 

a single parameter as an estimation of the HRF amplitude (H) for each model. These 

parameters were computed as a combination of the estimated parameters obtained 

through the GLM fit.   

When using canonical HRF, a single parameter is obtained individually for each 

condition. However, including the derivative terms in the model results in additional 
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parameter estimates, one for each additional derivative terms. Considering only the non-

derivative term may induce amplitude bias due to the delay difference between the model 

and the measured time series. To counteract these effects, H was calculated by 

incorporating the derivative terms proposed by [48].  

For TD 

 𝐻 =  𝑠𝑖𝑔𝑛(𝛽̂1) √𝛽̂1
2

+ 𝛽̂2
2
 (6) 

where 𝛽̂1 is the estimated parameters for the canonical HRF and 𝛽̂2 is for the temporal 

derivative term.  

For DD  

  𝐻 =  𝑠𝑖𝑔𝑛(𝛽̂1) √𝛽̂1
2

+ 𝛽̂2
2

+ 𝛽̂3
2
  (7) 

where 𝛽̂1 is the estimated parameters for the canonical HRF and 𝛽̂2 and 𝛽̂3 is for the 

temporal and dispersion derivative terms, respectively.  

When considering GAMMA, I used the same approach as for the canonical model plus 

its derivatives to determine H:  

  𝐻 =  𝑠𝑖𝑔𝑛(𝛽̂1)√𝛽̂1
2

+ 𝛽̂2
2

+ 𝛽̂3
2
  (8) 

where 𝛽̂1 , 𝛽̂2  and 𝛽̂3 are the estimated parameters for the fitted gamma functions. 

For FIR, I calculated the average of the estimated parameters assigned to the interval 

ranged between 4 and 6 s from the stimulus onset:  

 𝐻 =
1

𝑛
∑ 𝛽̂𝑖

𝑡+𝑛
𝑖=𝑡  (9) 

where n is the number of averaged estimated parameters (𝑛 =
2

𝑇𝑅
+ 1), t is the index of 

the basis function corresponding to 4 s from the stimulus onset and 𝛽̂𝑖 is the estimated 

parameter for the ith basis function of the FIR model. The investigated interval for 

averaging was defined based on the individual HRF estimations using FIR considering 

each subject and MB factor to include a period around the peak. 
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3.5 Identification of ROIs 

Four object-selective visual cortical regions were defined based on anatomical landmarks 

and statistical contrast maps (thresholded at p < 0.001, uncorrected) individually using 

the functional localizer scans: 

• fusiform face area (FFA) responding more intensely when the subjects viewed 

faces than when they viewed other categories of objects [49]  

• occipital face area (OFA) also responding selectively to faces [50] 

• parahippocampal place area (PPA) responding selectively to passively viewed 

scenes and houses [51] 

• extrastriate body area (EBA) responding selectively to human body [52] 

The statistical contrast maps were created based on GLM approach using canonical HRF.  

The fusiform face area (FFA) and the occipital face area (OFA) were determined as the 

areas responding more intensely to faces relative to houses. The parahippocampal place 

area (PPA) was identified as the area showing higher activation magnitude to houses than 

faces. Both right and left FFA were defined in 14 subjects, whereas right and left OFA 

were identified in 14 and 13 subjects, respectively. The right and left PPA and right and 

left EBA were found in all subjects. The locations of the ROIs are displayed in Figure 6.  

The investigated volumes for the ROI-based analyses were defined as a sphere with radius 

of 6 mm and centrally located around the peak voxel of the identified ROI. On the 

extracted sphere volumes, individually determined (using SPM Segmentation routine) 

gray matter mask was also applied. The locations of the investigated volumes are 

represented in Figure 6.  
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3.6 Outcome metrics 

I investigated the interaction between the higher sampling rate acquired with multiband 

imaging and the choice of the HRF model from two aspects. Firstly, I approached this 

problem by testing the combined effect of these factors on statistical outcome measures 

of the image stimuli (face, house and body) vs. baseline contrast at both subject-level and 

group-level. Secondly, to examine the influence of higher temporal sampling obtained 

with the multiband imaging on the performance of the different HRFs, I carried out  GoF 

measures of the GLM fit. The applied calculations are discussed in the following sections.  

 

Figure 6. Locations of the investigated ROIs based on the union of the individual ROIs. The 

clusters are overlaying on a group-average anatomical image. The z coordinates of the axial slices 

are MNI coordinates (Abbreviations: FFA= fusiform face area, OFA = occipital face area, PPA 

= parahippocampal place area, EBA = extrastriate body area).  

3.6.1 Group-level statistics  

Group-level random-effects analyses were performed on individual H values (introduced 

in Section 3.4) voxel by voxel for each dataset and model.  H values were averaged across 

image stimuli (face, house, and body) to investigate all image stimuli versus baseline 

contrast in the voxelwise analysis. The resulted t-score maps were thresholded at p<0.001 

(uncorrected) and masked by SPM built-in grey matter mask. Furthermore, the number 

of grey matter voxels exceeding the threshold were also extracted. 

Group-level t-statistics were conducted on ROI-averaged H values for each model - MB 

factor combination as well. The input values were computed by calculating a simple mean 

of the H values within each ROI, then averaging it across hemispheres for each subject. 

Contrary to voxelwise analysis, the contrasts were chosen to compare that image stimulus 

the specific area is selective for with the baseline: face versus baseline for FFA and OFA, 

house versus baseline for PPA and body versus baseline for EBA.  
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3.6.2 Subject-level statistics  

For subject-level investigations, voxelwise t-scores were obtained for a representative 

subject in case of each MB factor - HRF model combination. However, the resulted t-

scores can not be directly compared at subject-level due to the different degrees of 

freedom arising from the different number of observations and estimated parameters. 

Even the same t-scores can mean different statistical significance and produce different 

outputs (e.g. in assessing whether a voxel is active or not). Thus, voxelwise p-values (i.e. 

whole-brain probability maps) were calculated based on the resulted t-scores for the 

representative subject in case of each MB factor - HRF model combination. The number 

of grey matter voxels were also obtained exceeding threshold p = 0.001 (uncorrected). 

3.6.3 Goodness of Fit measures 

As mentioned previously, the quality of the GLM fit using different models was 

characterized via GoF measures. I calculated voxelwise adjusted R2 using the SPM 

MACS toolbox resulting in whole-brain maps for each subject and HRF model-MB factor 

combination. On the resulted individual maps, both whole-brain and ROI-based analyses 

were carried out.  

Group-level mean maps were produced by averaging the individual adjusted R2 maps for 

each MB factor-HRF model combination. In addition, group-level across-model mean 

maps were obtained for each fMRI dataset.  

Furthermore, I calculated the group-level means of ROI-averaged adjusted R2 values for 

each MB factor-HRF model combination within each ROI. The individual ROI-averaged 

adjusted R2 values were computed identically to the individual ROI-averaged H values 

described in Section 3.6.1.  

To determine the effects of the scanning protocol and the HRF model or if there is any 

interaction between them, I performed two-way repeated measures analysis of variance 

(ANOVA) with factors MB factor (MB1, MB4, MB6) and HRF model (CAN, TD, DD, 

FIR, GAMMA) on the ROI-averaged R2 values. Mauchly’s test of sphericity [53] 

indicated that the assumption of sphericity had been violated (p<0.05), thus 

Greenhouse-Geisser correction [54] was applied on the results of two-way repeated 

measures ANOVA. 
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To obtain detailed information on the pairwise differences between specific groups, 

multiple comparison analysis was also conducted using Tukey’s Honestly Significant 

Difference Procedure for each ROI. This method involves correction for multiple 

comparisons to avoid incorrect rejection of the null hypothesis owing to the large number 

of tests. Significance was set at p < 0.05. Two-way repeated measures ANOVA, 

Mauchly’s test  and multiple comparison analysis was performed using MATLAB built-

in functions. 
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CHAPTER 4 

Results 

4.1 Goodness of Fit measures 

In Figure 7,  the same axial slices of the group-level mean adjusted R2 maps are shown 

for the three MB factors and the five HRF models. The images show an apparent decrease 

in GoF values for MB6, while the MB4 provides a similar level of adjusted R2 values 

compared to MB1. The sign of the differences between MB1 and MB4 shows high region 

dependence for all models. 

For each MB factor, a similar trend of GoF is seen across models, TD and DD had the 

highest and GAMMA had the lowest adjusted R2 values. Despite its high flexibility, FIR  

did nor provide the best fit. Figure 7 and Figure 8 show a similar spatial pattern with 

superior adjusted R2 values seen in the visual cortex, the differences between MB6 and 

the other two scanning protocols also peaks in the visual cortex. 

The ROI-based analysis supported these results. (Figure 9). A clear drop is seen in GoF 

measures at MB6 compared to MB1 and MB4 for all regions and HRF models. 

Furthermore, similar across-model trends were observed in the investigated ROIs with 

higher GoF for TD, DD and FIR and lower for CAN and GAMMA. Similar to the whole-

brain analysis, the use of GAMMA produced the lowest GoF measures. The differences 

amongst the models showed a pronounced reduction for MB6 compared to MB4 and 

MB1. PPA, located in a brain area characterized by reduced SNR due to severe distortion 

and signal loss [55], provided a lower GoF compared to the other three ROIs, with mean 

adjusted R2 values below 0.09.  

In all the four ROIs, the two-way repeated-measures ANOVA with Greenhouse-Geisser 

correction indicated significant differences in adjusted R2 values related to either MB 

factor (FFA: F(1.95,29.32) = 10.47, p<0.001; OFA : F(1.95,25.36) = 15.33, p<0.001; 

PPA: F(1.89,30.20) = 22.04, p<0.001, EBA: F(1.88,30.01)=12.26, p<0.001) or HRF 

model (FFA: F(3.77,56.59) = 36.69, p<0.001; OFA : F(3.73,48.45) = 51.94, p<0.001; 

PPA: F(3.01,48.12) = 26,61, p<0.001, EBA: F(3.58,57.23) = 32.38, p<0.001).  
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Figure 7. Maps of group-level mean R2 values for each MB factor and HRF model (upper panel) 

and differences considering MB factor (lower panel). The images present the same axial slice 

(z=36, MNI coordinate).  
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Figure 8. Maps of across-model group-level mean of adjusted R2 values and differences between 

them. The images present the same axial, coronal and sagittal slices (MNI coordinates: x = 60, y 

= 20, z = 36).  

Furthermore, there was a significant interaction between MB factor and HRF model 

(FFA: F(1.55,23.3) = 6.74, p<0.001; OFA: F(1.81,23.55) = 6.51, p<0.001; PPA: 

F(1.48,23.65) =8.78, p<0.001, EBA: F(1.71,27.35)=5.85, p<0.001), which means that the 

GoF of a specific model depends on the utilized MB factor the fMRI dataset were 

acquired with. 

The results of multiple comparison analyses can be found in the Appendix (Tables A1-

A8). The multiple comparisons revealed a significant reduction in GoF for MB6 

compared to MB1 and MB4 in most cases (Tables A1-A4). Though Figure 9 shows small 

differences between the mean adjusted R2 values of MB1 and MB4, the pairwise 

comparisons indicated no significant differences for all HRF models and ROIs, with the 

exception of a few cases in OFA (Table A2). As seen in Figure 9, the across-model 

differences at MB6 are smaller compared to MB1 and MB4, in FFA, only one across-

model comparison was significant at MB6: FIR vs. DD (Table A5). Considering the 

models with the highest R2 mean values, TD, DD and FIR differ significantly in most 
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cases at MB1 and MB6, however, indicates no significant differences at MB4 in each 

region (Table A5-A8). It is also noteworthy that compared to the most frequently used 

model CAN, the more flexible models as TD, DD and FIR do not always provide better 

GoF depending on the investigated brain region and the acquisition protocol.  

 

 

Figure 9. Group-level means of ROI-averaged adjusted R2 values for each MB factor and HRF 

models with their standard error in each ROI. The individual plots are scattered around MB1, 

MB4, and MB6 horizontally only for visualization purposes. 

4.2 Group-level statistics  

Figure 10 shows axial slices of the group-level t-score maps thresholded at p<0.001 

(uncorrected), displaying voxels identified as active, resulted in the random effect 

analysis for each dataset and model. The same axial slice is represented as for Figure 7. 

The spatial pattern and the intensity of the identified activations indicate a high 

dependency on the choice of the model and the MB factor. The visual cortex is displayed 

as active in all images, however, the intensity and the spatial extent vary amongst models 

and MB factors (e.g., active regions for MB4-GAMMA are more extended than MB6-

FIR). Furthermore, Figure 10 shows that MB4 and MB6 reveal additional regions as 

active: significant voxels with peak activation located in the parahippocampal gyrus and 

in insula (denoted by green and yellow arrays in Figure 10, respectively), which are not 

detected or containing only a few voxels when using MB1. The extent and the intensity 

in these regions also show high model-specific dependence, e.g. FIR and DD detected 

fewer voxels in insula compared to the other models. 
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Figure 10. Group-level t-score maps for each MB factor and HRF model. Each map is thresholded 

at T=3.69 (p<0.001, uncorrected). The t-scores are overlaid on a group-average anatomical image 

presenting the same axial slice (z = 36, MNI coordinate). Green and yellow arrows denote active 

voxels in the insula and the parahippocampal cortex, respectively. 

The extracted numbers of activated voxels are shown in Figure 11. The results revealed 

a similar across-model trend for all acquisition protocol, CAN, TD and GAMMA 

provided the highest, FIR and DD provided the lowest values. MB4 produced the highest 

number of activated voxels for each model. The average number of activated voxels was 

slightly larger at MB6 compared to MB1. The across-model variability measured by CV 

reveals a clear increase with MB factor. 
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The results of the ROI-based group-level t-statistics (Figure 12) show a crucial 

dependence on region, MB factor and HRF model. The highest t-scores are seen at MB6 

in 13 of the total 20 cases. MB1 appears to outperform MB6 and MB4 only in one case, 

fitting  GAMMA within EBA. In the case of CAN, MB6 provided higher t-scores 

compared to MB1 and MB4 within each ROI. Looking at the results of other models, no 

apparent MB factor superiority can be observed. 

Figure 11. The number of activated voxels within SPM built-in grey-matter mask extracted from 

group-level t-maps thresholded at T=3.69 (p<0.001) for each HRF model and MB factor. The 

across-model means (Mean) and the coefficient of variation (CV) are also displayed.  

 

 

Figure 12.  ROI-based group-level t-scores for each MB factor and HRF model.  
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4.3 Subject-level statistics  

Figure 13 shows axial slices of the subject-level probability maps thresholded at p<0.001 

(uncorrected), displaying voxels labeled as active. The images show somewhat similar 

results as with the group-level t-maps (Figure 10): high dependency on the choice of the 

model and the MB factor can be observed. Furthermore, the application of MB4 and MB6 

also produces additional active areas or reveals detected regions with expanded spatial 

extent when compared with MB1 (e.g. in insula and parahippocampal gyrus). The 

acquired number of activated voxels (Figure 14) also confirmed that: the across-model 

mean was the highest for MB4 and the second-highest for MB6. However, the acquired 

coefficient of variation values indicate lower across-model variability for multiband 

protocols (MB4 and MB6) compared to MB1 in the case of the representative subject 

disagreeing with the group-level results.  

Figure 13. Probability maps thresholded at p<0.001 (uncorrected) from a representative subject 

for each MB factor and HRF model. The p-values are overlaid on the individual anatomical image 

(after transformation into MNI space) presenting the same axial slice (z = 36, MNI coordinate). 

Only voxels within individual grey matter mask are displayed. Green and yellow arrows denote 

active voxels in the insula and the parahippocampal cortex, respectively. 
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Figure 14. The number of activated voxels within the individual grey-matter mask extracted from 

subject-level probability maps thresholded at p<0.001(uncorrected) for each HRF model and MB 

factor. The values were obtained for a representative subject. The across-model means (Mean) 

and the coefficient of variation (CV) are also displayed.  
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CHAPTER 5 

Discussion and conclusion 

The interaction between acceleration using multiband protocols and applied HRF model 

has been investigated by evaluating three different scanning protocols (standard EPI with  

2-fold in-plane acceleration (GRAPPA) without multiband: MB1, MB4 and MB6) and 

five SPM built-in HRF models. For this purpose, statistical analysis was performed on 

both group-level and subject-level. Furthermore, adjusted R2 values were calculated to 

estimate the quality of the GLM fit using different models. 

The multiband protocols showed possible benefits in t-statistics at both group-level and 

subject-level using the examined models. Based on the statistical maps (t-scores at group-

level and p-values at subject-level), additional areas were identified as active which may 

be relevant to the task: significant voxels with peak activation located in the posterior part 

of the parahippocampal gyrus and in the anterior insula were observed. The posterior part 

of the parahippocampal gyrus plays an essential role in visual processing [56], [57], the 

anterior insula as a part of the saliency network subserves high-level cognitive control 

and attentional mechanisms facilitating task-related information processing [58], [59]. 

The extent and the intensity of these activations also show apparent across-model 

variance for each MB factor. The assessment of the number of activated voxels revealed 

higher across-model mean for the multiband protocols at both group-level and subject-

level. Furthermore, the increased across-model variability in number of activated voxels 

for MB4 and MB6 indicates that the use of the multiband techniques may increase the 

sensitivity to the HRF models at group-level. However, the results from a representative 

subject have not confirmed that at subject-level.  

Furthermore, considering ROI-based analysis, multiband protocols also indicate gains on 

t-statistics at group-level in the majority of the investigated MB factor-HRF model 

combinations. However, it is noteworthy that the increased number of activations and t-

scores may result from task-independent effects, e.g. the incomplete correction of the 

interslice leakage and the increased temporal autocorrelation owing to multiband 

acquisition. However, even when MB6 protocols produced increased t-scores at group-

level, GoF measures indicated a significant reduction for this dataset compared to MB1 
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and MB4, which also challenge the reliability of the datasets acquired with higher MB 

factor. This effect may be due to the SNR loss related to g-factor penalty of the multiband 

technique, the incomplete T1 relaxation and the inaccuracy of the applied models. The 

degree of contributions of these factors is not clear. 

The results make no clear suggestion which investigated acquisition protocol and model 

should be used when conducting task-based fMRI experiment, statistical benefit at group 

level as well as higher across-model sensitivity may come from the higher sampling rate 

obtained with multiband techniques. However, the quality of the GLM fit may also 

decrease. Considering the revealed spatial variability, one should take into account the 

investigated brain region when choosing multiband acceleration and HRF model for the 

GLM fit.  
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CHAPTER 6 

Summary 

Accurate modeling of the hemodynamic response function (HRF) is still of great interest 

in functional MRI (fMRI) research. The emergence of multiband techniques has enabled 

temporal sampling rates to be significantly higher, which can also change the sensitivity 

to the HRF model misspecification due to the higher number of samples obtained in a 

single response. The aim of the current thesis was to investigate the interaction between 

the use of multiband techniques and the choice of the HRF model in General Linear 

Model (GLM) fit.  

For this purpose, I evaluated fMRI datasets obtained with standard EPI sequence with 2-

fold in-plane GRAPPA acceleration (MB1) and multiband EPI with two different 

multiband factors, 4 (MB4) and 6 (MB6). After carrying out standard preprocessing steps, 

I analyzed the functional datasets in a GLM framework.  Five commonly used SPM built-

in HRF models were independently fitted to each functional dataset.  

Based on the parameters obtained with GLM fit, I computed voxelwise statistical 

outcome measures at both subject-level and group-level. To estimate the quality of the 

GLM fit using different models, I calculated adjusted coefficient of determination (R2) 

values as a goodness of fit (GoF) measures. Region of interest (ROI) analyses were also 

performed for group-level statistics and GoF measures using four object-selective brain 

regions.  

The results show significant interaction between the choice of the HRF model and the 

applied MB factor for each outcome measure. Both group-level and subject-level 

statistical maps indicated that the use of multiband protocols could reveal additional, 

potentially relevant active areas (e.g. in insula) compared to MB1, also confirmed by the 

higher mean number of activated voxels. The extent of the activations shows high across-

model variance for each investigated acquisition protocol.  

Furthermore, considering ROI-based analysis, multiband protocols also indicate gains on 

t-statistics at group-level in the majority of the investigated MB factor-HRF model 

combinations. However, even when MB6 protocols produced increased t-scores at group-

level, GoF measures indicated a significant reduction for this dataset compared to MB1 
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and MB4. This effect may be due to the SNR loss related to g-factor penalty of the 

multiband technique, the incomplete T1 relaxation and the inaccuracy of the applied 

models. 

The results also show substantial region-dependency of the outcome measures using 

different MB factor-HRF model combinations. Therefore, when considering multiband 

protocol and the HRF model, one should also take into account the investigated brain 

region.   
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Appendix 

Tables A1-A8 represent the results of the multiple comparison analyses on the ROI-

averaged adjusted R2 values based on Tukey’s test. The significant results (p<0.05) are 

denoted with asterix and highlighted in bold.  

HRF 
model 

MB 
factor A 

MB 
factor B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound 
Upper 
Bound 

CAN 

MB1 MB4 0.017 0.014 0.477 -0.020 0.053 

MB1 MB6 0.055 0.016 0.008* 0.015 0.096 

MB4 MB6 0.039 0.011 0.009* 0.010 0.068 

DD 

MB1 MB4 0.019 0.019 0.590 -0.030 0.068 

MB1 MB6 0.075 0.016 0.001* 0.032 0.117 

MB4 MB6 0.056 0.014 0.003* 0.020 0.091 

FIR 

MB1 MB4 -0.003 0.017 0.980 -0.047 0.040 

MB1 MB6 0.062 0.013 0.001* 0.028 0.096 

MB4 MB6 0.065 0.014 0.001* 0.028 0.103 

GAM 

MB1 MB4 0.014 0.008 0.212 -0.006 0.034 

MB1 MB6 0.024 0.012 0.138 -0.007 0.055 

MB4 MB6 0.010 0.011 0.621 -0.018 0.038 

TD 

MB1 MB4 0.009 0.018 0.874 -0.037 0.054 

MB1 MB6 0.062 0.014 0.001* 0.026 0.098 

MB4 MB6 0.053 0.013 0.003* 0.018 0.088 

Table A1. The results of the multiple comparisons for each HRF model within FFA  

HRF 
model 

MB 
factor A 

MB 
factor B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound 
Upper 
Bound 

CAN 

MB1 MB4 0.062 0.018 0.013* 0.013 0.110 

MB1 MB6 0.096 0.020 0.001* 0.044 0.148 

MB4 MB6 0.035 0.014 0.062 -0.002 0.071 

DD 

MB1 MB4 0.079 0.021 0.007* 0.022 0.135 

MB1 MB6 0.127 0.020 <0.001* 0.075 0.179 

MB4 MB6 0.049 0.015 0.018* 0.008 0.089 

FIR 

MB1 MB4 0.026 0.021 0.437 -0.028 0.081 

MB1 MB6 0.082 0.017 0.001* 0.036 0.127 

MB4 MB6 0.055 0.016 0.011* 0.013 0.098 

GAM 

MB1 MB4 0.016 0.013 0.481 -0.019 0.051 

MB1 MB6 0.039 0.014 0.042* 0.001 0.078 

MB4 MB6 0.024 0.016 0.345 -0.019 0.067 

TD 

MB1 MB4 0.044 0.026 0.233 -0.024 0.112 

MB1 MB6 0.110 0.019 <0.001* 0.061 0.160 

MB4 MB6 0.066 0.026 0.060 -0.003 0.135 

Table A2. The results of the multiple comparisons for each HRF model within OFA 
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HRF 
model 

MB 
factor A 

MB 
factor B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound 
Upper 
Bound 

CAN MB1 MB4 0.001 0.006 0.978 -0.014 0.016 

MB1 MB6 0.036 0.009 0.003* 0.013 0.059 

MB4 MB6 0.034 0.008 0.001* 0.014 0.055 

DD MB1 MB4 0.006 0.008 0.754 -0.015 0.027 

MB1 MB6 0.056 0.010 <0.001* 0.029 0.083 

MB4 MB6 0.050 0.009 <0.001* 0.026 0.074 

FIR MB1 MB4 -0.010 0.007 0.376 -0.027 0.008 

MB1 MB6 0.043 0.008 <0.001* 0.022 0.064 

MB4 MB6 0.053 0.009 <0.001* 0.029 0.076 

GAM MB1 MB4 0.001 0.005 0.993 -0.013 0.014 

MB1 MB6 0.024 0.006 0.001 0.010 0.039 

MB4 MB6 0.024 0.005 0.001 0.011 0.037 

TD 

MB1 MB4 0.001 0.008 0.998 -0.022 0.021 

MB1 MB6 0.047 0.008 <0.001* 0.026 0.069 

MB4 MB6 0.048 0.008 <0.001* 0.026 0.069 

Table A3. The results of the multiple comparisons for each HRF model within PPA 

HRF 
model 

MB 
factor A 

MB 
factor B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound 
Upper 
Bound 

CAN 

MB1 MB4 0.029 0.020 0.331 -0.022 0.080 

MB1 MB6 0.072 0.021 0.010* 0.017 0.128 

MB4 MB6 0.043 0.015 0.025* 0.005 0.081 

DD 

MB1 MB4 0.039 0.021 0.187 -0.016 0.094 

MB1 MB6 0.104 0.020 <0.001* 0.052 0.156 

MB4 MB6 0.065 0.014 0.001* 0.027 0.102 

FIR 

MB1 MB4 -0.003 0.021 0.991 -0.056 0.050 

MB1 MB6 0.078 0.019 0.002 0.029 0.127 

MB4 MB6 0.081 0.017 <0.001* 0.038 0.124 

GAM 

MB1 MB4 0.017 0.011 0.259 -0.010 0.045 

MB1 MB6 0.041 0.015 0.036* 0.002 0.079 

MB4 MB6 0.023 0.014 0.239 -0.012 0.059 

TD 

MB1 MB4 0.023 0.019 0.464 -0.026 0.073 

MB1 MB6 0.084 0.018 0.001* 0.039 0.130 

MB4 MB6 0.061 0.015 0.002* 0.024 0.099 

Table A4. The results of the multiple comparisons for each HRF model within EBA 
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MB 
factor 

HRF 
model A 

HRF 
model B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound Upper 
Bound 

MB1 

CAN DD -0.030 0.005 <0.001* -0.046 -0.014 

CAN FIR -0.010 0.004 0.082 -0.021 0.001 

CAN GAMMA 0.038 0.007 0.001* 0.015 0.061 

CAN TD -0.018 0.003 <0.001* -0.027 -0.008 

DD FIR 0.020 0.005 0.010* 0.004 0.036 

DD GAMMA 0.068 0.011 <0.001* 0.035 0.101 

DD TD 0.013 0.003 0.004* 0.004 0.021 

FIR GAMMA 0.048 0.007 <0.001* 0.026 0.070 

FIR TD -0.008 0.004 0.264 -0.019 0.003 

GAMMA TD -0.055 0.008 <0.001* -0.081 -0.029 

MB4  

CAN DD -0.028 0.005 0.001* -0.044 -0.012 

CAN FIR -0.030 0.006 0.002* -0.049 -0.011 

CAN GAMMA 0.035 0.008 0.007* 0.009 0.061 

CAN TD -0.026 0.007 0.024* -0.048 -0.003 

DD FIR -0.002 0.003 0.947 -0.011 0.007 

DD GAMMA 0.063 0.012 0.001* 0.026 0.100 

DD TD 0.002 0.008 0.998 -0.021 0.026 

FIR GAMMA 0.065 0.012 0.001* 0.028 0.102 

FIR TD 0.004 0.006 0.953 -0.015 0.024 

GAMMA TD -0.060 0.011 <0.001* -0.093 -0.028 

MB6 

CAN DD -0.011 0.007 0.546 -0.033 0.011 

CAN FIR -0.004 0.007 0.982 -0.024 0.017 

CAN GAMMA 0.006 0.007 0.915 -0.017 0.029 

CAN TD -0.011 0.009 0.705 -0.038 0.016 

DD FIR 0.007 0.002 0.016* 0.001 0.014 

DD GAMMA 0.017 0.008 0.235 -0.007 0.041 

DD TD 0.001 0.005 0.998 -0.015 0.015 

FIR GAMMA 0.010 0.008 0.745 -0.015 0.035 

FIR TD -0.007 0.005 0.561 -0.023 0.008 

GAMMA TD -0.017 0.007 0.187 -0.040 0.006 

Table A5. The results of the multiple comparisons for each MB factor models within FFA 
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MB 
factor 

HRF 
model A 

HRF 
model B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound Upper 
Bound 

MB1 

CAN DD -0.030 0.005 <0.001* -0.046 -0.014 

CAN FIR -0.010 0.004 0.082 -0.021 0.001 

CAN GAMMA 0.038 0.007 0.001* 0.015 0.061 

CAN TD -0.018 0.003 <0.001* -0.027 -0.008 

DD FIR 0.020 0.005 0.010 0.004 0.036 

DD GAMMA 0.068 0.011 <0.001* 0.035 0.101 

DD TD 0.013 0.003 0.004 0.004 0.021 

FIR GAMMA 0.048 0.007 <0.001* 0.026 0.070 

FIR TD -0.008 0.004 0.264 -0.019 0.003 

GAMMA TD -0.055 0.008 <0.001* -0.081 -0.029 

MB4  

CAN DD -0.028 0.005 0.001* -0.044 -0.012 

CAN FIR -0.030 0.006 0.002* -0.049 -0.011 

CAN GAMMA 0.035 0.008 0.007* 0.009 0.061 

CAN TD -0.026 0.007 0.024* -0.048 -0.003 

DD FIR -0.002 0.003 0.947 -0.011 0.007 

DD GAMMA 0.063 0.012 0.001* 0.026 0.100 

DD TD 0.002 0.008 0.998 -0.021 0.026 

FIR GAMMA 0.065 0.012 0.001* 0.028 0.102 

FIR TD 0.004 0.006 0.953 -0.015 0.024 

GAMMA TD -0.060 0.011 <0.001* -0.093 -0.028 

MB6 

CAN DD -0.011 0.007 0.546 -0.033 0.011 

CAN FIR -0.004 0.007 0.982 -0.024 0.017 

CAN GAMMA 0.006 0.007 0.915 -0.017 0.029 

CAN TD -0.011 0.009 0.705 -0.038 0.016 

DD FIR 0.007 0.002 0.016* 0.001 0.014 

DD GAMMA 0.017 0.008 0.235 -0.007 0.041 

DD TD 0.001 0.005 0.998 -0.015 0.015 

FIR GAMMA 0.010 0.008 0.745 -0.015 0.035 

FIR TD -0.007 0.005 0.561 -0.023 0.008 

GAMMA TD -0.017 0.007 0.187 -0.040 0.006 

Table A6. The results of the  multiple comparisons for each MB factor models within OFA 

 

 

  



48 
 

MB 
factor 

HRF 
model A 

HRF 
model B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound Upper 
Bound 

MB1 

CAN DD -0.031 0.006 0.001* -0.049 -0.012 

CAN FIR -0.018 0.006 0.035* -0.035 -0.001 

CAN GAMMA 0.017 0.008 0.265 -0.008 0.042 

CAN TD -0.021 0.006 0.013* -0.038 -0.004 

DD FIR 0.013 0.004 0.046* 0.000 0.025 

DD GAMMA 0.047 0.008 <0.001* 0.022 0.073 

DD TD 0.010 0.003 0.031* 0.001 0.018 

FIR GAMMA 0.035 0.006 <0.001* 0.016 0.053 

FIR TD -0.003 0.003 0.892 -0.013 0.007 

GAMMA TD -0.038 0.006 <0.001* -0.056 -0.020 

MB4  

CAN DD -0.026 0.006 0.005* -0.044 -0.007 

CAN FIR -0.029 0.006 0.001* -0.046 -0.011 

CAN GAMMA 0.016 0.009 0.342 -0.010 0.043 

CAN TD -0.022 0.006 0.014* -0.040 -0.004 

DD FIR -0.003 0.003 0.821 -0.011 0.005 

DD GAMMA 0.042 0.008 0.001* 0.018 0.067 

DD TD 0.003 0.004 0.877 -0.008 0.015 

FIR GAMMA 0.045 0.007 <0.001* 0.024 0.066 

FIR TD 0.006 0.003 0.130 -0.001 0.014 

GAMMA TD -0.039 0.007 <0.001* -0.059 -0.018 

MB6 

CAN DD -0.010 0.002 <0.001* -0.015 -0.005 

CAN FIR -0.010 0.002 <0.001* -0.016 -0.005 

CAN GAMMA 0.006 0.003 0.292 -0.003 0.015 

CAN TD -0.009 0.002 0.005* -0.016 -0.002 

DD FIR 0.000 0.001 0.999 -0.005 0.004 

DD GAMMA 0.016 0.003 0.002* 0.006 0.026 

DD TD 0.001 0.002 0.983 -0.005 0.007 

FIR DD 0.000 0.001 0.999 -0.004 0.005 

FIR GAMMA 0.016 0.002 <0.001* 0.009 0.024 

GAMMA TD -0.015 0.003 0.002* -0.025 -0.005 

Table A7. The results of the multiple comparisons for each MB factor within PPA 

  



49 
 

MB 
factor 

HRF 
model A 

HRF 
model B 

Mean 
Difference 

(A-B) 

Standard 
Error 

Significance 
(p-value) 

95% Confidental Interval 

Lower Bound Upper 
Bound 

MB1 

CAN DD -0.047 0.009 0.001* -0.076 -0.018 

CAN FIR -0.013 0.008 0.583 -0.038 0.013 

CAN GAMMA 0.058 0.016 0.016* 0.009 0.106 

CAN TD -0.025 0.008 0.034* -0.048 -0.002 

DD FIR 0.035 0.006 <0.001* 0.017 0.053 

DD GAMMA 0.105 0.018 <0.001* 0.049 0.160 

DD TD 0.022 0.004 <0.001* 0.010 0.035 

FIR GAMMA 0.070 0.015 0.002* 0.024 0.116 

FIR TD -0.012 0.004 0.086 -0.026 0.001 

GAMMA TD -0.083 0.014 <0.001* -0.127 -0.038 

MB4  

CAN DD -0.037 0.007 <0.001 -0.057 -0.016 

CAN FIR -0.044 0.007 <0.001* -0.066 -0.023 

CAN GAMMA 0.046 0.014 <0.025 0.005 0.088 

CAN TD -0.031 0.006 <0.002* -0.050 -0.011 

DD FIR -0.007 0.006 0.774 -0.027 0.012 

DD GAMMA 0.083 0.018 0.002* 0.028 0.138 

DD TD 0.006 0.007 0.908 -0.016 0.028 

FIR GAMMA 0.090 0.017 0.001 0.038 0.143 

FIR TD 0.014 0.007 0.341 -0.008 0.035 

GAMMA TD -0.077 0.015 0.001* -0.122 -0.032 

MB6 

CAN DD -0.015 0.007 0.245 -0.037 0.006 

CAN FIR -0.007 0.007 0.863 -0.028 0.014 

CAN GAMMA 0.026 0.010 0.095 -0.003 0.055 

CAN TD -0.013 0.010 0.720 -0.044 0.018 

DD FIR 0.009 0.003 0.026* 0.001 0.017 

DD GAMMA 0.042 0.008 0.001* 0.017 0.066 

DD TD 0.003 0.006 0.993 -0.017 0.022 

FIR GAMMA 0.033 0.008 0.004* 0.010 0.056 

FIR TD -0.006 0.006 0.850 -0.025 0.013 

GAMMA TD -0.039 0.008 0.002* -0.064 -0.014 

Table A8. The results of the multiple comparison Analysis for each MB factor within EBA 

 

 


