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FELADATKIÍRÁS

Az MR képalkotás gyorsítására szolgáló, szeleten belüli illetve egyszerre több-

szeletes Parallel Imaging módszerek alapötlete, hogy a hiányzó adatokat több, eltér®

térbeli érzékenységi pro�lú mér®tekercs egyidej¶ használatával, azok mért adatainak

kombinálásával pótoljuk. Különösen a kutatási célú, illetve a dinamikus mérések es-

etében a minél gyorsabb adatgy¶jtésre való igény speciálisan a gyorsításra tervezett,

nagy elemszámú (akár 64 elemb®l álló) mér®tekercsek piaci megjelenéséhez és elter-

jedéséhez vezetett. A mér®csatornák egyre nagyobb száma ugyanakkor a rekon-

strukció számításigényét rendkívüli módon megnöveli, ami � különösen az fMRI

vizsgálatok esetében � az egyes mérések között szünetek beiktatását követelheti

meg a rekonstrukció végeztéig, illetve széls®séges esetben a valós idej¶ rekonstruk-

ciót végz® számítógép összeomlásához vezethet. A technikai problémákon kívül ez

különösen nagy gondot okozhat az azonnali rekonstrukciót igényl® módszek, mint pl.

a neurofeedback kísérletek esetén, amikor a kísérleti személynek a mérési adatokat

majdnem-valós id®ben szeretnénk visszajelezni.

A nemrég publikált, ún. tekercs tömörítési (Coil Compression) eljárások segít-

ségével lehet®ség van a csatornaszám drasztikus csökkentésére, kihasználva, hogy az

egyes tekercsek érzékenységi pro�ljai nem ortogonálisak, illetve az általuk kifeszített

tér alacsonyabb dimenziós lehet, mint a tekercsek száma. Ennek köszönhet®en

lehet®ség van kevesebb számú, virtuális tekercs matematikai létrehozására, oly mó-

don, hogy a párhuzamos képalkotásra való képesség továbbra is megmarad, a kép-

min®ség romlása pedig minimális; a rekonstrukciós id® azonban jelent®sen lecsökken.

A hallgató feladata a Coil Compression eljárások (f®komponens-analízis, vagy ki-

olvasó irányú geometriai tömörítés) matematikai hátterének megismerése, valamint a

csökkentett tekercselem-szám hatásának vizsgálata a zajnövekedésre, illetve a m¶ter-

mékek megjelenésére.
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Chapter 1

Introduction

One of the most promising and most dynamically improving medical imaging modal-

ity of recent years has been Magnetic Resonance Imaging (MRI). Not only does it

operate with non-ionizing radiation but MRI has also further considerable advan-

tages compared to other medical imaging modalities. Application of di�erent pulse

sequences allows creating medical images with various contrast, thus a huge variety

of anatomical and functional information can be extracted utilizing the same device.

However, one of the main drawbacks of this multipurpose tool is the lengthy

acquisition. Total scan time of a high resolution anatomical scan can last up to 10

minutes, while the measurement of several images with di�erent contrast, widely

used in radiology, can endure 30 minutes. This can lead to a fall in possible applica-

tions both in clinical practice and research activity. In clinical diagnostics, not only

may lengthy data acquisition decrease patient comfort but also increase the possi-

bility of image artifacts, which is utmost undesirable. In addition, e.g. a computed

tomography (CT) measurement, with a comparable spatial contrast and diagnostic

value, can be performed in a fraction of a second.

In the hope of eliminating this problem, a signi�cant percentage of MRI research

and development has been intending to reduce total scan time while image quality

remains untouched. Several endeavors were introduced in the late 1990's and early

2000's but only few of them achieved great success. The �rst breakthrough dates

1999, when Pruessmann et al. [12] presented the �rst clinically applicable Parallel

Imaging (PI) technique, called Sensitivity Encoding (SENSE). Later on, Griswold

et al. [13] introduced Generalized Autocalibrating Partially Parallel Acquisitions

(GRAPPA). During the blossom of such early attempts was born the term Parallel

Imaging (PI) referring to the common physical background of these techniques. All

PI methods aim to reduce total scan time by acquiring less data than required for a

conventional reconstruction method. In every case, the missing data is synthesized

to recreate the total k-space. The mean of missing k-space data synthesis alters

method by method, however they all exploit implicitly or explicitly the spatially
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varying sensitivity pro�les of receiver coils. Reconstruction algorithms adopt the

additional information provided by the spatial variance of sensitivity pro�les, which

serve as a supplementary degree of freedom. Thus, the partially measured k-space

can be completed numerically and the full image can be reconstructed.

As a result, a tendency for increased number of receiver coils in MRI measure-

ments has emerged. Increased number of receiver coils o�er several advantages such

as increased SNR, more complete detection coverage of the sample and possible

implementation of PI techniques.

On the other hand, increased number of receiver coils challenge scanner manufac-

turers to boost reconstruction hardware performance as reconstruction algorithms

must run on all raw data of every receiver channel. Not only are procurement and

maintenance of such powerful systems costly but the gain of shortened acquisition

is lost at time-consuming reconstruction.

This thesis aims to investigate Coil Compression (CC) methods for PI which can

reduce the amount of data sent to reconstruction hardware, as CC is performed right

after acquisition prior to reconstruction. Consequently, time loss can be minimized.

In the �rst chapter of this thesis, a brief overview of Magnetic Resonance Imaging

is given. Afterwards, clinically relevant Parallel Imaging techniques are presented.

Noise ampli�cation generated by the speci�c Parallel Imaging reconstruction is quan-

ti�ed and analytically derived. In the following chapters, the Coil Compression

concept is introduced, followed by its e�ects on reconstruction ampli�ed noise and

image quality. Simulation and in-vivo measurement results are displayed.
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Chapter 2

Fundamental Physics of Magnetic

Resonance Imaging

2.1 Magnetic Resonance

Magnetic Resonance Imaging (MRI) is based on the phenomenon of magnetic res-

onance of the atomic nucleus, which reveals the origin of its former name, Nuclear

Magnetic Resonance Imaging (NMRI). Every elementary particle possesses an in-

trinsic momentum (S) [1], often referred to as spin. A magnetic moment (µ) can be

associated with the spin of elementary particles [1]), de�ned as follows

µ = γS (2.1)

where γ is a constant called gyromagnetic ratio. Gyromagnetic ratio is a unique

constant for each elementary particle and/or nucleus, that is typically determined

experimentally. As magnetic moment and spin only di�ers in a constant value, the

two terms are used interchangeably throughout this thesis. Adequate discussion of

MRI physics does not require quantum mechanical representation as the mean value

of results derived using quantum mechanical representation is equal to the classical

results [3]. Hence, from this time forth, problems are discussed in the classical

picture.

Consider a static, uniform, external magnetic �eld B0 parallel to the z-axis of

the coordinate system (Equation 2.2) and a magnetic moment µ with an arbitrary

angle with respect to the z-axis.

B0 = B0ez (2.2)

The magnetic moment µ experiences a torque N, whose absolute value is pro-

portional to the external �eld and its direction is perpendicular to the external �eld
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and the magnetic moment at all times [1]. Mathematically, the torque is given by

N = µ×B0 (2.3)

The torque can be expressed as the time derivative of the angular momentum

[2], which in the current case yields

N =
dS

dt
=

1

γ

dµ

dt
(2.4)

Setting Equation 2.3 and 2.4 equal to each other, we obtain Bloch-equations

(Equation 2.5) [4], which is the equation of motion of such a magnetic moment in

an external magnetic �eld.

dµ

dt
= γµ×B0 (2.5)

The presence of the external �eld forces the magnetic moment to precess around

the external �eld, i.e. the z-axis in the current setup. The equation of motion is

analogous to the one of a spinning gyroscope. Herein lies the explanation for the

terms 'spin' and 'gyromagnetic ratio'.

The angular frequency of the precession is given in Equation 2.6, where both

the vectorial and scalar forms are indicated. The negative sign in the vectorial form

indicates the negative, i.e. clockwise direction of the precession.

ωL = −γB0 ωL = γB0 (2.6)

The precessing magnetic moments induce a changing magnetic �eld, which can

be detected with coils placed around the sample. The MRI signal comes from the

perpendicular component of the magnetic moments with respect to the z-axis as

the parallel components with respect to the z-axis have no time dependence. This

statement is valid only if relaxation is neglected. Magnetic moments reach their

equilibrium when they are parallel to the external magnetic �eld. The transverse

component becomes zero, the MRI signal disappears.

2.2 Rotating Reference Frame, Excitation and Re-

laxation

Excitation denotes the energy transfer into the precessing magnetic moments via ra-

diofrequency (RF) pulse. RF pulse put the magnetic moments into a higher energy

state from the ground state, hence they produce a net transverse magnetization.

Precession and relaxation are simultaneously present until the spins return to the
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ground state. As long as the net transverse magnetization is present, the radiated

energy can be observed, which provides the MRI signal. In clinical practice (for hu-

man body tissue) the precession-induced magnetic �eld has six orders of magnitude

greater amplitude than the relaxation-induced �eld [3]. Consequently, the latter

term is generally neglected in MRI. However, in solid state NMR this statement no

longer holds and both must be taken into account.

To discuss RF excitation, it is useful to make a transition from the laboratory

reference frame into the rotating reference frame. Let ω' denote the angular fre-

quency of the precession of the magnetic moments in the rotating frame, ωL the

Larmor-frequency in the laboratory reference frame and ω the angular frequency of

the rotating reference frame. Thus, ω′ = ωL − ω holds all times. If the angular

frequency of the rotating system matches the Larmor-frequency, then the magnetic

moments seem to stand still in the rotating frame, that is ω′ = ωL − ω = 0. This

special framework can be handled as if the external magnetic �eld was zero, that is

B0 = 0. In the upcoming paragraph the statement is proved.

Consider a rotating reference frame with arbitrary angular frequency Ω. Equa-

tion 2.7 holds for the time derivatives of an arbitrary vector V [2], where the time

derivative with comma denotes the rotating frame, while the time derivative with-

out comma denotes the laboratory frame. Hence, Equation 2.7 equally holds for

Equation 2.8.

dV

dt
=

(
dV

dt

)′
+ Ω× V (2.7)

dµ

dt
=

(
dµ

dt

)′
+ Ω× µ (2.8)

The time derivative of the magnetic moment is known in the laboratory frame

(Equation 2.5). Setting Equation 2.8 and 2.5 equal, then using the properties of the

vector product, we �nd Equation 2.13. The steps of the derivation are indicated

below.

γµ×B =

(
dµ

dt

)′
+ Ω× µ (2.9)

γµ×B =

(
dµ

dt

)′
− (µ×Ω) (2.10)

(γµ×B) + (µ×Ω) =

(
dµ

dt

)′
(2.11)

γµ×
(
B +

Ω

γ

)
=

(
dµ

dt

)′
(2.12)
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(
dµ

dt

)′
= γµ×Beff Beff = B +

Ω

γ
(2.13)

Beff = B +
Ω

γ
= B +

(−γB)

γ
= 0 (2.14)

Inserting the de�nition of Equation 2.6 into Equation 2.13, we �nd that the

magnetic moments indeed seem to stand still in a reference frame rotating with

the exact Larmor-frequency (Equation 2.14). This speci�c rotating frame seems a

natural choice, and from this time forth, the magnetic moments are considered in

this speci�c rotating frame.

Consider an additional magnetic �eldB1=Bx′ex′ in the rotating reference frame1.

The magnetic moments are excited from the equilibrium and are precessing in the

y'-z' plane, whereas, in the laboratory frame, they follow a complicated trajectory as

a superposition of two simultaneous precessions. As a result, the magnetic moments

gain a transverse component, a detectable MRI signal is induced. The procedure

is called excitation in the MRI literature, whereas the 'radiofrequency' pre�x refers

to the range of the Larmor-frequency of the B1 �eld. As MRI devices available

in clinical practice operate with �eld of 1-3 T, the excitation is in the range of

radiofrequency. RF excitation is commonly referred to as RF 'pulses' since their

millisecond duration is considered a point-like time event compared to the rest of

the acquisition [3]. RF pulses are characterized by the �ip angle in degree or radian,

such as 90◦ or π/2 pulse, 180◦ or π pulse, etc.

It is worth to take a moment to highlight the accuracy of the expression resonance

in Magnetic Resonance Imaging. Magnetic moments are capable of absorbing energy

only in a narrow range around the Larmor-frequency [5]. Quantum mechanical

derivation of magnetic resonance proves that only a narrow range around ω = ωL of

the induced emission and absorption spectrum shows a considerable peak [2]. Thus,

a resonance frequency can be de�ned that can be treated analogous to the classical

forced resonance [2]. Adopting the analogy to the classical picture, one can state

that the requirement of perfect excitation is the matching Larmor-frequency for RF

pulse B1.

Magnetization, i.e. the density of magnetic moments in a volume unit, is de�ned

in Equation 2.15. Bloch-equations are still valid as the magnetization is the vectorial

summation of single magnetic moments.

M =
1

V

∑
i

µi (2.15)

1In MRI literature the directions of the standing reference frame are denoted by the common

x,y,z parameters, whereas the directions of the rotating frame are denoted by capital letters X,Y,Z

or extra commas x',y',z'.
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The relaxation of the magnetization is due to two simultaneous procedures; a

longitudinal and a transverse relaxation. After an RF excitation the longitudinal

magnetization decays according to Equation 2.16, which is characterized by the

�rst-order time constant T1. Equation 2.16 describes two concurrent processes; the

longitudinal magnetization Mz(0) built up by the RF pulse decays, while the initial

magnetization M0(0) reaches its maximum.

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1) (2.16)

The transverse magnetization (component perpendicular to the external �eld)

decays according to Equation 2.17.

Mxy(t) = Mxy(0)e−t/T2 (2.17)

Longitudinal and transverse relaxation truly di�er in their nature. Longitudi-

nal relaxation includes interaction and energy transfer to the environment, whereas

transverse relaxation occurs due to temporary statistical phase decoherence [3]. Typ-

ical values of T1 and T2 vary according to materials and cover a huge range from

a few nanoseconds until a few seconds. In practice, T2 6 T1 generally holds. It

is noteworthy that none of these relaxation are recoverable, true information loss

occurs.

2.3 One Dimensional Imaging

Basic concept of Magnetic Resonance Imaging can be introduced via one dimensional

imaging. Notions, quantities are de�ned in one dimension that are later generalized

for higher dimensions. During current discussion, relaxation is neglected and a one

dimensional e�ective spin density along z-axis is considered.

MRI highly relies on the direct relation between the Larmor-frequency of spins

and the strength of the external magnetic �eld, as discussed in Section 2.1. If

there is a given spatial dependence of the external �eld B0, consequently a spatial

dependence of the Larmor-frequency appears. The relation can be exploited as

follows: signal, originated from a spin, carries information on the spatial location on

the given spin if the magnetic �eld has a spatial dependence. Consider the following

spatial dependence of the external �eld, denoted by Equation 2.18 and 2.19. After a

simple insertion, Larmor-frequency of the spins can be written as in Equation 2.20.

Spatial derivative in Equation 2.19 is called gradient strength, whereas the spatially

dependent external magnetic �eld Gz · z is referred to as gradient �eld.

B(z) = B0 +Gz · z (2.18)
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Gz =
∂B(z)

∂z
(2.19)

ωL = γBz = γB0 + γGz · z (2.20)

To put it in another way, if the spectral distribution of the MRI signal is known,

then, after a simple rescaling, the contribution to the signal of a given spin at a

speci�c coordinate z can be calculated. The mathematical tool for acquiring spectral

distribution is known as Fourier transform [6]. In a nutshell, once a linear gradient

�eld is activated, the inverse Fourier transform of the time dependent signal returns

the one dimensional image of the spin density along the z-axis. Mind that a linear

gradient �eld is essential to maintain the linear features of imaging and to minimize

image distortion by virtue of higher terms of the non-linear gradient �eld.

2.4 k-space and Resolution in One Dimensional Imag-

ing

MRI signal disappears typically 1 ms after a gradient �eld is switched on. Quanti-

tative description of gradient �elds require new terminology, which was created by

the introduction of k-space.

Switching on gradient �elds can be interpreted as the intentional augmentation

of external �eld inhomogeneity, which leads to an extremely quick spin decoherence.

The e�ect of gradient �elds bears a strong resemblance of the spin decoherence

experienced when performing a Free Induction Decay (FID) experiment [3]. Just as

it is possible to recover the signal loss by reversing T ∗2 decay in a standard NMR spin

echo experiment [3], signal loss due to gradient �elds can be reversed by switching on

another external gradient �eld with opposite polarity. Consider a spin population in

a constant, spatially non-varying phase. Now turn on a positive gradient �eld. Those

spins who experience a greater external �eld than in the ground state accumulate

positive phase with respect to a reference spin that is located in the origin. Once the

other gradient �eld with the opposite polarity is put on, the same spins experience

a smaller �eld, their relative phase decreases. If the gradient �eld with the opposite

polarity is on long enough, all spins lose their accumulated relative phase, and

all spins have the same phase, hence a detectable MRI signal is recovered. This

phenomenon is called gradient echo.

The aforementioned relative phase can be de�ned as follows

φ(z, t) = γz

∫ t

0

Gz(t
′)dt′ (2.21)

Let us de�ne a new quantity kz as follows
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kz(t) :=
γ

2π

∫ t

0

Gz(t
′)dt′ (2.22)

Equation 2.23 holds for a typical MRI acquisition, that is, the integral of the

complex-valued e�ective spin density (ρ) is measured during an MRI scan.

S ∝
∫
ρ(z)e−iφ(z,t)dz (2.23)

Adopting Equation 2.22 into Equation 2.23, we �nd

S ∝
∫
ρ(z)e−i2πkz ·zdz = S(kz) = F{ρ(z)} (2.24)

It has been proved that, if the relative phase is due to a linear external gradients

�eld, the MRI signal is proportional to the Fourier transform of the e�ective spin

density. As a result of the Fourier transform, the natural variable of the signal

becomes kz. Two quantities, z and kz are alluded to as Fourier conjugate variables,

since kz bears the same dependence on z as the frequency f bears on time t, variables

commonly used in conventional Fourier transform.

Analyzing Equation 2.22, one can realize that the highest detectable spatial

frequency, which is described by Equation 2.24, is proportional to the time integral

of the gradient �eld. If the gradient �eld is constant in time, then it is proportional

to the acquisition time. This criteria is the special case of the Nyquist-Shanon

sampling theorem [8]. The longer a time dependent signal is sampled, the higher the

resolution of the spectrum is, that is, the higher the spatial resolution is, translating

the Nyquist-Shannon sampling theorem to the very special case of MRI.

Consequences of fast spin decoherence are to be kept in mind when measurement

techniques and protocols are designed. Signal amplitude of high k values are small

due to the accumulated relative spin phase. Consequently, low k values contain

most of the relevant information. An optimal signal acquisition protocol can be

set up if the herein discussed gradient echo sequence is applied. Signal acquisition

is launched at the exact same moment when a negative gradient �eld is switched

on, after a positive gradient �eld has been applied. This methods reorganizes spin

coherence, i.e. takes them back to k=0, while positive and negative k values are

equally covered.

2.5 Two Dimensional Imaging and Field-of-View

During a conventional two dimensional scan, data is collected around k=0 in a rect-

angular lattice. Image is gained via a simple 2D Fourier transform. The simplest

way to cover the rectangular formed region-of-interest (ROI) in k-space, is the sys-
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tematical repetition of the aforementioned 1D gradient echo sequence. Signal loss

due to T ∗2 decay is not reversed by the 2D gradient echo, which is one of its major

drawbacks [3]. To overcome this fault, has been introduced the spin echo sequence

[3]. Argumentation on the accumulated relative spin phase and on signal acqui-

sition concepts, that has previously been derived for gradient echo, still holds for

spin echo. However, the major di�erence between a gradient echo and a spin echo

sequence lies in the way of provoking spin phase recovery. While the accumulated

relative phase is annulled by switching gradient polarity at a gradient echo sequence,

spin echo sequences achieve this with an extra 180◦ pulse. Thus, gradient polarity

does not need to be reversed during the acquisition. Application of a 180◦ pulse can

be interpreted as time-reversing [3], which gives the explanation on why T ∗2 decay

can be reversed. As T ∗2 decay is caused by B0 �eld inhomogenity, a simple inversion

acts as if the B0 �eld had been inverted, which recovers phase accumulation.

During a 2D spin/gradient echo sequence, two gradient �elds are activated: one is

switched on during the acquisition, which is referred to as readout (RO) or frequency-

encoding gradient in MRI nomenclature, the other tunes the relative phase of the

spins before acquisition. The latter is called phase-encoding (PE) gradient. A com-

parative �gure of the conventional spin ans gradient echo is displayed in Figure 2.1,

utilizing the usual nomenclature.

Figure 2.1: [9] Sequence diagram of a conventional spin echo (a) vs. gradient echo
(b). Both sequences are repeated several times. Readout gradients (Grd), phase-
encoding (Gpe) and slice selecting gradients (Gss) are denoted, as well as RF pulses
and data acquisition (signal). The major di�erence between a conventional spin echo
vs. gradient echo lies in the number of RF pulses (90◦ & 180◦ vs. 90◦, respectively)
and the readout gradient polarity (one polarity vs. reversed polarity, respectively).
On the sequence diagram of the gradient echo (a), α denotes an arbitrary �ip angle
for the RF excitation.

As MRI is a digital device, data sampling is performed in every ∆t step. It is

a valid assumption that RO direction is sampled continuously, while PE direction

is covered in discrete steps. Discrete PE sampling leads to the de�nition of the
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�eld-of-view (FOV). FOV is the region which imaging can provide information of.

It is essential to have a large enough FOV that includes the ROI in all sampling

directions, especially in the PE direction, to avoid image artifacts. In case of a

small FOV, the outlying regions are not simply cut o� from the �nal image, but

they appear on the opposite site, i.e. wrapping-around or aliasing.

Wrapping-around is a direct consequence of Nyquist-Shannon sampling theorem

[8]. If the time dependent signal is not sampled fast enough, i.e. PE steps are too

large, high frequency components are cut o� from the frequency spectrum, and wrap

around the low frequencies, resulting in aliasing.

2.6 Slice Selection and Three Dimensional Imaging

In clinical practice, 2D scans have gained popularity over 3D scans due to their

time-economic features. During a 2D scan, the e�ective spin density in the third

direction is integrated, that is a projected image is produced. However, the distortion

of the projection can be decreased by slice selection. Slice selection prevents a

complete projection along the third axis, and only integrates the signal in the interval

de�ned by the slice selection. Covering the third direction with equidistant 2D

scans, the whole set of images provides su�cient amount of medical information.

It is essential to chose a slice thickness wisely, not to integrate over a region where

major anatomical changes occur in human body.

Slice selection is performed by the activation of a gradient �eld during RF exci-

tation (as displayed on Figure 2.1). Direct dependency of the Larmor-frequency on

the external �eld is the key element for slice selection. The bandwidth of the RF

pulse de�nes the slice width which spins are excited in, as their Larmor-frequency is

in same bandwidth as the frequency of the RF pulse. Bear in mind that the excited

slice is perpendicular to the applied slice selection gradient �eld.

2.7 The MRI Signal and the Principle of Reciprocity

In the previous paragraphs, the central topic has been to describe the changes in the

magnetic �eld of a sample by virtue of the presence of an external magnetic �eld.

It has been shown that, once the magnetization has gained a transverse component,

the detection of the precession can be considered.

MRI signal detection is performed via coils that are placed around the sample.

The sample's own magnetic �eld varies over time due to precession, hence an elec-

tromotive force (emf ) is induced in the surrounding coil, a consequence of Faraday's

law of induction [24]. The emf, that is, the detected MRI signal S, induced in the

coil can be written as follows
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emf = S = −dΦ

dt
(2.25)

where Φ denotes the �ux of the precessing spins sweeping through the coil surface.

De�nition of magnetic �ux can be reformulated utilizing Stoke's theorem [25] as

follows

Φ =

∫∫
S

BdS =

∮
l

Adl (2.26)

where B denotes the magnetic �eld, A stands for the vector potential. Let

us suppose quasi-static approximation of magnetic �elds, which allows neglecting

radiation terms. The approximation holds for small magnetic �elds [26]. As a

result, the vector potential yields

A(r) =
µ0

4π

∫
d3r′

j(r′)

|r− r′|
(2.27)

Current density j(r′) of the sample is associated with the magnetic �eld of the

sample.

j(r′) = ∇×M(r′) (2.28)

Plugging Equation 2.28 into Equation 2.27 and 2.26, we �nd

Φ =

∮
l

Adl =

∮
l

dl

[
µ0

4π

∫
d3r′

j(r′)

|r− r′|

]

=

∮
l

dl

[
µ0

4π

∫
d3r′
∇′ ×M(r′)

|r− r′|

]

=
µ0

4π

∫
dl

∫
d3r′

[
−∇′

|r− r′|
×M(r′)

]
=
µ0

4π

∫
d3r′M(r′)

[
∇′ ×

(∮
dl

|r− r′|

)]
(2.29)

The speci�c case of Equation 2.27 for current loops shows that the curl of the

line integral over the current path in Equation 2.29 is actually the magnetic �eld

per unit current that would be produced by the coil at the point r′ [3]. The quantity

B(r′)receive, boarded by rectangular parenthesis in Equation 2.29, is referred to as

coil sensitivity pro�le, which is widely used to characterize coils.

Breceive = B/I = ∇′ ×
(
µ0

4π

∮
dl

|r− r′|

)
(2.30)

Flux (Equation 2.29) can be rewritten as
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Φ =

∫
d3r′B(r′)

receive
M(r′, t) (2.31)

Equation 2.31 declares the principle of reciprocity, i.e. the �ux depends on the

receive �eld, that is produced by current induced by the change of �ux in the receiver

coil [3]. Higher the induced voltage is as a response of the change of magnetization,

the more sensible the coil is. Coil sensitivity pro�les serve as spatial weighting of

signal, which highly a�ects signal detection. Signal contribution of spins situated

farther from the coil center are suppressed, whereas the signal of closely located

spins are relatively magni�ed.

Coil sensitivity pro�les vary over design, dimension and manufacturer. How-

ever, purpose of the coil largely de�nes the possible coil sensitivity con�guration.

Transmitter body coils possess homogeneous sensitivity pro�les over a wide region,

whereas local receiver surface coils own sensitivity maps that vary intensively in

space. In the upcoming chapters, weighting of the spatially varying sensitivity maps

are used to introduce modern and robust techniques for total acquisition time re-

duction.
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Chapter 3

Parallel Magnetic Resonance

Imaging

This chapter contains an in-depth discussion of the PI techniques which bene�t from

the spatially varying coil sensitivity pro�les. The techniques presented here are in-

plane acceleration methods. Thus, the conventional MRI terminology regarding 2D

scans is commonly used.

3.1 Image-space reconstruction: SENSE

Consider an ideal MRI experiment scenario with a single receiver channel possessing

a homogeneous sensitivity pro�le. The raw measured signal is proportional to the

simple Fourier transform of the e�ective spin density ρ(r), as denoted below

S(t) ∝
∫
ρ(r)e−i2πkrd3r (3.1)

However, when dealing with numerous, non-ideal receiver channels, there is an-

other practical aspect to consider, namely the spatially varying sensitivity pro�les, as

described in Section 2.7. Consider a coil with N receiver channels where B(r′)receivej

designates the sensitivity pro�le of the j-th channel. The signal of the j-th channel

can be expressed as follows

Sj(t) ∝
∫
ρ(r)B(r)receivej e−i2πkrd3r (3.2)

The e�ective spin density is voxel-wisely multiplied by the sensitivity pro�le of

the given channel. Consequently, the raw signal is weighted by the receiver channel's

very own sensitivity pro�le B(r)receivej , thus, additional information is encoded into

the signal, which can be put to use.
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PI techniques aim to realize some serious time gain by accelerating the mea-

surement by undersampling k-space. The concept behind SENSE is to increase the

equidistant k-space steps in PE direction (Figure 3.1), i.e. decreasing the FOV in

PE direction, thus accelerating the data acquisition. Missing k-space data is syn-

thesized by the explicit use of sensitivity pro�les. Spatial resolution does not change

as the extent of k-space coverage remains untouched, i.e. k-space is still equidis-

tantly sampled from −kmax to kmax. However, during acquisition, only a fraction of

the original k-space is covered as the distance between successive k-space lines has

increased. In MRI literature the systematic undersampling ratio of k-space in the

PE direction is known as acceleration factor (R). RO direction is fully sampled, no

acceleration is applied in that direction, compared to a conventional scan.

Figure 3.1: E�ect of decreased FOV on image quality. On the left: k-space steps
for a large enough FOV and k-space steps for FOV/2 case are denoted, respectively.
Blue and white dots denote measured data and unmeasured data, respectively. kx and
ky stand for the RO and PE direction, respectively. Displayed example represents
k-space steps of an acceleration factor of 2. On the right: wrap-around artifact in
the PE direction due to small FOV.

The gain in total scan time is proportional to the acceleration factor. However,

performing a conventional inverse Fourier transform on such dataset would result in

aliasing in the PE direction which is utmost objectionable. To avoid such artifact,

the missing k-space lines in PE direction are synthesized utilizing the sensitivity

maps. This implies that SENSE reconstruction algorithm requires two datasets:

the measurement of coil sensitivity maps and the accelerated measurement.

Consider the simplest SENSE measurement scenario with receiver coils N = 2

and acceleration factor R = 2. Let I1 and I2 denote two voxels of the image-space

signal, i.e. two voxels achieved after the simple inverse Fourier transform of raw

k-space signal S1 and S2 (I = F−1(S)). It should be noted that image-space signal

I su�ers from aliasing and the degree of aliasing is encoded by R. Hence, the

term superimposed voxel or overlapping voxel can be introduced to denote a voxel

containing information from R separate coordinates of the e�ective spin density.
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Figure 3.2: [3] Schematic �gure of signal weighting. Spatially varying coil sensitiv-
ity pro�les weight the one dimensional e�ective spin density (ρ) according to their
spatial position. Weighting enables voxel separation, thus regaining separate signals
of overlapping voxels.

I1 and I2 belong to coordinates x1 and x2, where the e�ective spin density is

ρ1 and ρ2, respectively. Voxel distance yields ∆x = |x2 − x1| = FOVPE

2
. Voxel

distance ∆x is not an arbitrary value, but is implicitly encoded by the aliasing via

the acceleration factor, that is, in general, ∆x = FOVPE

R
. Let Cij stand for the

value of the sensitivity pro�le of the i-th channel at coordinate xj. A schematic

demonstration of sensitivity pro�le is displayed on Figure 3.2. The image-space

signal of the two superimposed voxels can be written as follows

I1 = C11ρ1 + C12ρ2 I2 = C21ρ1 + C22ρ2 (3.3)

Using the more suitable vector and matrix formalism, Equation 3.3 can be re-

formulated as follows [
I1

I2

]
=

[
C11 C12

C21 C22

][
ρ1

ρ2

]
(3.4)

Reformulation o�ers a great possibility to make a full transition into the gener-

alized discussion of the problem with arbitrary receiver channels N and acceleration

factor R.

I =


I1

I2

...

IN

 C =


C11 C12 · · · C1R

C21 C22 · · · C2R

...
...

. . .
...

CN1 CN2 · · · CNR

 ρ =


ρ1

ρ2

...

ρR

 (3.5)

Adopting Equation 3.5 in Equation 3.4 yields

I = Cρ (3.6)
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It is important to note that, in general, the sensitivity matrix of superimposed

voxelsC is a non-square matrix. However, in order to get an overdetermined solution

for ρ, C must contain more rows than columns. As a result, a physical realization

criteria can be set: the number of receiver channels must be greater than or equal

to the acceleration factor (N ≥ R). In general, an exact solution for ρ cannot

be computed, but a fair enough approximation can be estimated using the Moore-

Penrose pseudoinverse [19] of the sensitivity matrix.

ρ = C−1
P I = (C†C)−1C†I (3.7)

The Moore-Penrose pseudoinverse C−1
P provides the most suitable solution based

on the method of least squares known from regression analysis [19].

It has been shown that the explicit knowledge of coil sensitivity maps opens a

new horizon in special reconstruction algorithms. However, extracting the accurate

sensitivity map of a setup is not straightforward as they may di�er from patient to

patient due to electromagnetic coupling between the human body and the coil [12].

Thus, a typical SENSE protocol consists of a low resolution prescan of the sensitivity

maps and the accelerated measurement with the desired user parameters. Further-

more, patient movement can seriously a�ect image quality as image reconstruction

is largely based on prior knowledge of the sensitivity maps of the given measurement

setup. If the setup parameters change, the accumulating phase errors will result in

remaining aliasing artifacts on the �nal image.

So far the impact of noise on reconstruction has been neglected. The ordinary

least squares method in Equation 3.7 is SNR optimal only if the measurement noise

of each channel is independent of one another and has the same variance in all

receiver channels. As this is usually not the case in practice, the noise covariance

between receiver channels has to be taken into account. Detailed discussion of noise

ampli�cation by the reconstruction and how the noise covariance of coils should be

taken into consideration in reconstruction is described in Section 3.3.1.

3.2 Reconstruction in k-space: GRAPPA

SENSE reconstruction is performed in image-space. However, the natural represen-

tation of raw MRI data is in k-space. Hence, the idea arose naturally: it would

be fortunate to synthesize the missing k-space data in k-space, right before tran-

sitioning into image-space with a simple inverse Fourier transform. This concept

lead to the rise of k-space-based algorithms which do not require the explicit knowl-

edge of sensitivity maps. Several k-space-based techniques have been developed, but

the most widespread is Generalized Autocalibrating Partially Parallel Acquisitions
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(GRAPPA), �rst presented by Griswold et al. [13].

The accelerated measurement is executed exactly the same way as in the case

of SENSE; k-space steps in PE direction are increased, i.e. decreasing the FOV

in PE direction. The missing k-space lines, however, are right away synthesized in

k-space. The concept is the following: the neighboring points of each missing k-

space point contain some information on the missing points. This prior knowledge

is used for data synthesis. Information blurring is originated from the convolution of

the Fourier transform of the e�ective spin density and the Fourier transform of the

sensitivity maps. Whereas, in case of SENSE, the spin density is weighted by the

spatially varying sensitivity maps, i.e. voxel-wise product of the two quantities in

image-space, in k-space, the Fourier transform of the two quantities are convoluted.

The convolution in k-space is responsible for the information blurring. Equation

3.8 demonstrates the aforementioned equality and designates that inverse Fourier-

transform to regain the image.

F−1(F(I ·C))︸ ︷︷ ︸
SENSE

= F−1(F(I) ∗ F(C))︸ ︷︷ ︸
GRAPPA

(3.8)

It is noteworthy that information blurring is only signi�cant to the extent of the

support of the Fourier transform of the coil sensitivity maps. This gives an intuition

of the extent of the kernel size as no further gain belongs to a kernel whose size is

considerable larger than the Fourier transform of the coil sensitivity maps.

Every missing k-space point is computed as the linear combination of the sur-

rounding points, which mathematically can be reformulated as in Equation 3.9.

Sj(kl) denotes the missing data at k-space location kl from the j-th coil, while

Sm(kn) stands for the measured data at k-space location kn from the m-th coil.

The k-space weights w bear all aforementioned indices; m denotes the source coil,

n stands for the source data index, while j denotes the target coil, n stands for the

target data index of wj,l,m,n. The k-space set of weights wj,l,m,n is also referred to as

kernel in MRI literature [14].

Sj(kl) =
∑
m,n

wj,l,m,nSm(kn) (3.9)

If equidistant sampling is respected, kernel derivation only requires the relative

k-space coordinates (l − n) (Equation 3.10), as the same kernel is swept through

the k-space [14]. Kernel w is composed of N2 subkernels as all data from source

coils (N) are utilized to compute missing data for all target coils (N). Derivation

of subkernels only requires the relative coordinates (l − n), as the source and the

target coils are used explicitly.
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Sj(kl) =
∑
m,n

wj,m,l−nSm(kn) (3.10)

Ideal combination weights are derived from the autocalibration signal (ACS)

dataset. The calibration kernel is swept through the ACS dataset and at each k-

space location a source and a target vector is built, as displayed in Figure 3.3. Once

covering the whole ACS k-space, all source and target vectors are concatenated

horizontally, yielding the source (Ssource) and target matrices (Starget). Information

blurring ensures the connection between the source and target matrices, which is

established by the combination weights in Equation 3.11. Combinations weights are

derived by inverting Equation 3.11 using the Moore-Penrose pseudoinverse, which

results in Equation 3.12. Finally, the same kernel is swept through on the k-space

of the accelerated measurement, but this time only building the source matrix.

Inserting the derived combination weights w and the newly formed source matrix

Ssource into Equation 3.11, the target matrix Starget can be computed.

Figure 3.3: GRAPPA kernel and reconstruction arrangement. 3 coil dimensions
are displayed. The same kernel is swept through the k-space (left side) and at each
k-space position a source and target vector are generated (right side).

Starget = wSsource (3.11)

w = StargetS
−1
source,p = StargetS

†
source(SsourceS

†
source)

−1 (3.12)

Once the missing data is synthesized for each receiver coil separately, the indi-

vidual receiver channel images are acquired by a simple inverse Fourier transform
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and the �nal image is obtained by e.g. the sum-of-square images of each receiver

channels.

In clinical practice, GRAPPA has overcome its predecessor, SENSE, due to its

numerous advantages. First of all, the explicit knowledge of sensitivity maps is not

required for the reconstruction. Secondly, no further measurement protocol must

be introduced apart from the conventional scan, as the nature of the ACS and the

data of accelerated measurement is alike. Furthermore, the typical ACS region is the

central region of k-space, which contains the largest amount of frequency information

when it comes to natural images. Not only can signal maximization be achieved by

the right choice of ACS, but the ACS dataset can later on be inserted into the

synthesized k-space to ameliorate image quality. Depending on manufacturers and

user setups, ACS dataset can be measured as a prescan, or during the accelerated

measurement without skipping the central k-space region.

3.3 Noise Ampli�cation in pMRI

As discussed in the previous sections, pMRI has numerous advantages, however

acceleration cannot remain unpunished. Decreased SNR is the price to pay. The

diminishing of SNR is due to two independent factors: an intrinsic lessening in SNR

as a result of incomplete k-space coverage and noise ampli�cation generated by the

reconstruction.

Numerous sources of noise can occur in an MRI experiment. The most straight-

forward distinction between noise sources is systematic and random noise. System-

atic noise commonly originates from hardware fault. Random noise can emerge from

physiological processes, i.e. patient movement, breathing, swallowing, blood circu-

lation, etc. The investigation of such e�ects on image quality is beyond this thesis.

Nevertheless, no matter how well monitored a scan is, thermal noise will always be

present. Thus, discussion introduced herein is narrowed down to thermal noise. We

aspire to derive the e�ect of thermal noise, that is present in raw k-space signal, on

the �nal image noise.

Let S(k) denote the raw k-space signal, S̃(k) the ideal, noiseless k-space signal

and ε(k) the k-space noise.

S(k) = S̃(k) + ε(k) (3.13)

Regularly, the �nal image is the inverse Fourier transform of the signal, that is
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I(x) = F−1(S(k)) = F−1(S̃(k)) + F−1(ε(k)) = Ĩ(x) + η(x) (3.14)

where the linearity of the Fourier transform is adopted [6]. I(x), Ĩ(x), η(x) stand

for the image, the ideal image and the image-space noise, respectively.

Thermal noise is approximately white, which means that the power spectral

density is nearly constant throughout the frequency spectrum [7]. When limited to

a �nite bandwidth, thermal noise amplitude can be approximated with a Gaussian

distribution [7], such as ε(k) ∼ N (0, σ2
m).

Practical realization of measurement operates with discrete sampling. ∆k de-

notes the step of discrete sampling in k-space, while ∆x denotes the step of discrete

sampling in image-space. The variance of the discrete-valued white noise yields

〈
ε(kp)ε

∗(kq)
〉

= σ2
mδpq (3.15)

where kp = p∆k and kq = q∆k. Plugging in the de�nition of discrete inverse

Fourier transforme [10] into the de�nition of image-space noise, we �nd

η(p∆x) =
1

Nacq

Nacq∑
p′=0

ε(p′∆k)ei2πp
′∆kp∆x (3.16)

The expectation value of Equation 3.16 yields

〈
η(p∆x)

〉
=

1

Nacq

Nacq∑
p′=0

〈
ε(p′∆k)

〉︸ ︷︷ ︸
0 for all p'

ei2πp
′∆kp∆x = 0 (3.17)

Equation 3.17 shows that the expectation value of the noise in image-space is

zero, meaning that there is no systematic noise originated from the thermal noise.

Now taking the variance of both sides of Equation 3.17, we get

〈
η(p′∆x)η∗(q′∆x)

〉
= σ2

im = (3.18)

=
1

N2
acq

Nacq∑
p′=0

Nacq∑
q′=0

〈
ε(p′∆k)ε∗(q′∆k)

〉︸ ︷︷ ︸
=σ2

mδp′q′

ei2πp∆x(p′∆k−q′∆k)

=
σ2
m

N2
acq

Nacq∑
p′=0

Nacq∑
q′=0

δp′q′e
i2πp∆x(p′∆k−q′∆k) =

σ2
m

Nacq

(3.19)

Equation 3.19 states that the variance of image-space noise σ2
im is Nacq times

smaller than the variance of k-space noise σ2
m, meaning that every voxel of the �nal

image is burdened with
√
Nacq times smaller noise than the corresponding k-space
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voxel. Considering the case of an accelerated acquisition, when only Nacq/R part of

the original k-space is acquired, we �nd that the reconstructed image of the accel-

erated measurement contains
√
R times greater noise compared to a conventional

scan.

σ2
im =

σ2
m

Nacq,R

=
σ2
m

Nacq/R
= R

σ2
m

Nacq

(3.20)

The voxel-wise noise level is quanti�ed by SNR, de�ned as the mean values of

the signal divided by the standard deviation of the noise (Equation 3.21).

SNR =
E[S]

σN

(3.21)

Expressing the same result of Equation 3.20 via the SNR, we �nd

SNRR ∝
SNRR=1√

R
(3.22)

Beyond the above described intrinsic phenomena, further complication arises

when it comes to Parallel Imaging. Due to the overlapping sensitivity pro�les and

remaining aliasing, an additional reduction in SNR occurs, which is represented by

the so-called geometric factor (g-factor), as denoted in Equation 3.23. G-factor

depends on coil noise and also takes into consideration the electromagnetic coupling

between coils.

SNRR =
SNRR=1

g
√
R

(3.23)

The upcoming sections aspire to investigate the respective g-factor of SENSE &

GRAPPA o�ering further insight to the speci�c features of both techniques.

3.3.1 SENSE g-factor

Consider the �nal image (I) which is composed of the inherent, noiseless image

(Ĩ = Cρ), as described by Equation 3.6, and the image noise (η).

I = Cρ+ η (3.24)

An SNR-optimal solution demands that the noise covariance between receiver

channels be taken into consideration. Let us assume white noise in each receiver

channel, such as thermal noise, i.e. noise represented with normal distribution (∼
N (µ, σ2)). The noise covariance matrix can be written as

Ψ =
〈
(η − 〈η〉)(η − 〈η〉)†

〉
=
〈
(ηη†

〉
(3.25)
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where † denotes the Hermitian adjoint i.e. conjugate transpose.

Equation 3.26 denotes the quadratic function that needs to be minimized to

achieve an SNR-optimal solution [12].

F = (I−Cρ)†Ψ−1(I−Cρ) (3.26)

Ideal image reconstruction algorithm (Equation 3.7) is modi�ed when image

noise is taken into account (Equation 3.27). Please be aware that Equation 3.7 is a

special case of Equation 3.27, once setting Ψ = 1, that is, accepting the hypothesis

of independently identically distributed (IID) receiver channel noise.

ρrecon = (C†Ψ−1C)−1C†Ψ−1I (3.27)

Consequently, reconstruction noise propagates the same way as the modi�ed

reconstruction.

η = (C†Ψ−1C)−1C†Ψ−1ε (3.28)

Respecting the recent �ndings, let us derive the variance of image noise.

σ2
recon =

〈
ηη†

〉
=
〈
[(C†Ψ−1C)−1C†Ψ−1η][(C†Ψ−1C)−1C†Ψ−1η]†

〉
=

= (C†Ψ−1C)−1C†Ψ−1
〈
ηη†

〉︸ ︷︷ ︸
Ψ

Ψ−1C†(C†Ψ−1C)−1 = (C†Ψ−1C)−1

Adopting the result of the standard deviation of image noise into the de�nition

of g-factor (Equation 3.23), we get

gk =
σrecon,R
σrecon,R=1

=

√
[(C†Ψ−1C)−1

R ]k,k√
[(C†Ψ−1C)−1

R=1]k,k

(3.29)

Reformulating Equation 3.29, we �nd the exact direction of g-factor computation.

gk =
√

[(C†Ψ−1C)−1
R ]k,k[(C†Ψ−1C)R=1]k,k (3.30)

3.3.2 GRAPPA g-factor

A di�erent approach is required for the derivation of GRAPPA g-factor. As g-

factor describes the spatial distribution of noise ampli�cation on the �nal image,

the previously introduced quantities of GRAPPA reconstruction must be translated

into image-space from k-space. An alternative GRAPPA reconstruction is presented

while the derivation of GRAPPA g-factor is deduced. Herein lies the di�culty of
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GRAPPA g-factor computation.

The schematic derivation of image-space kernel (W) is depicted in Figure 3.4. At

a given relative position l−n the kernel weights are extracted from the source dataset.

The kernel is �ipped in both dimension, then zero padded to reach the dimensions

of the reconstructed image, �nally an inverse Fourier transform is performed on it.

It is noteworthy that the kernel weights keep their relative position with respect to

one another throughout these transformations, which ensures that the information

associated with the relative coordinate l − n is still encoded in the image-space

kernel.

Figure 3.4: [14] Derivation of image-space GRAPPA kernel. k-space kernel (w)
is �ipped in both dimension, then zero padded to reach the dimensions of the re-
constructed image, �nally an inverse Fourier transform is performed on it. Image
space kernel (W ) is derived. The procedure is repeated N2 times to compute all
image-space kernels from original N2 k-space kernels.

Using the de�nition of convolution, the original k-space-based GRAPPA recon-

struction (Equation 3.10) can be rewritten into Equation 3.31. In image-space,

Equation 3.10 can be reinterpreted as a voxel-wise multiplication in image-space of

the overlapping images and the inverse Fourier transform of the adequate kernel.

Image-space GRAPPA reconstruction is reformulated in Equation 3.32. The rela-

tive coordinates of k-space position l − n have been omitted from Equation 3.32 as

l − n have been used at the derivation of image-space kernels. Please note that w

and W denote kernels in k-space and image-space, respectively and the number of

kernels remain N2 independently of the chosen representation.

Sj =
N∑
m=1

wj,m ∗ Sm (3.31)

Ij =
N∑
m

Wj,m · Im (3.32)

Consider the �nal image of the j-th individual receiver channel (Ij) which is

composed of the inherent, noiseless image (Ĩj) and the image noise (ηj).

28



Ij = Ĩj + ηj =
N∑
m

Wj,m · (Ĩm + ηm) (3.33)

Transitioning into vector and matrix formalism for all receiver channels, we �nd

I = Ĩ + η = W(I + η) (3.34)

The variance of the image noise is computed as follows

σ2
recon =

〈
ηreconηrecon†

〉
=
〈
(Wη)(Wη)†

〉
=

= W
〈
ηη†

〉
W† = WΨW† (3.35)

Contrary to SENSE, GRAPPA reconstruction algorithm return images sepa-

rately for every receiver channel. Thus, g-factors are computed separately for every

voxel of every receiver channel. According to de�nition, g-factor is the fraction of

image noise of the accelerated and non-accelerated image. G-factor for the j-th coil

yields

gj =
σrecon,R
σrecon,R=1

=

√
[(WΨW†)R]j,j√

[(Ψ)R=1]j,j
(3.36)

Individual g-factors are combined using the same combination weights as for the

combination of the individual images for reconstruction.

Ifinal =
N∑
j=1

pjI
recon
j = pT Irecon (3.37)

For a conventional sum-of-squares (SOS) combination the combination weights

are de�ned as [18]

pj =
I∗j
ISOS

(3.38)

Applying the combination weights on the image noise (η), the variance of the

image noise yields

σ2
final =

〈
ηfinalηfinal

†〉
=
〈
(pTWη)(pTWη)†

〉
=

= pTW
〈
ηη†

〉
W†p∗ = pTWΨW†p∗ (3.39)

Inserting the results into Equation 3.36, we �nd
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gfinal =
σfinal,R
σfinal,R=1

=

√
[(pTWΨW†p∗)R]√

[(pTΨp∗)R=1]
(3.40)

The non-accelerated individual images from each receiver channels must be com-

bined likewise, thus we �nd the denominator of Equation 3.40.
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Chapter 4

Coil Compression Methods

Receiver coils with a great number of receiver channels have become available in

clinical practice. Numerous advantages can be exploited by applying a great number

of receiver coils, such as increased SNR or improved acceleration performance in

pMRI. However, application of a large set of receiver channels generates an additional

need for hardware performance and computation capacity. The more channels collect

data from sample, the lengthier the reconstruction becomes.

Figure 4.1: Coil Compression work-�ow. CC is carried out in advance of image re-
construction. Current chapter is dedicated to the search of the linear transformation
A that executes the CC for diverse pMRI techniques.

Coil Compression (CC) methods allow reducing computation time by transform-

ing and combining raw k-space datasets prior to sending them to reconstruction

hardware, as illustrated on Figure 4.1. The core of CC algorithms is to compress

data from many physical channels into fewer virtual channels while minimizing the

SNR loss. Overlapping coil sensitivities in the folded ROI do not form an orthogonal

basis and often span a subspace whose dimension is considerably smaller than the

number of physical coils [15][16] resulting in a huge amount of redundant and highly

correlated data.

Realization of CC methods may di�er from one another but the basic concept

is identical. The key is that a linear transformations is applied on raw k-space

datasets. New set of virtual coils are generated from the original set of physical coils

by exploiting the singular value decomposition of linear algebra. A supplementary
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linear transformation may be applied to ensure spatial smoothness of virtual coil

sensitivities.

4.1 Coil Compression Methods

Let vk denote raw k-space data from all N physical receiver coils of a given coor-

dinate k. CC is achieved by a linear transformation represented by matrix A with

dimensions m× n. Mathematically, CC can be formulated as follows

v′k = Avk (4.1)

Throughout this section, one is in search of linear transformation A.

It has been shown in the previous chapter that the image noise in the unfolded

voxel k after an R-times accelerated measurement, described by the g-factor of

SENSE in Equation 3.30, can be expressed as follows

σ2
recon,R = [(C†kΨ−1

n Ck)−1
R ]k,k (4.2)

where Ck denotes the superimposed coil sensitivities from all coil in the super-

imposed voxel k, Ψ stands for the noise covariance of all receiver coils. One aims

to minimize noise propagation enhancement magni�ed by CC, i.e. ful�ll the criteria

σ2
recon,R = min.

Let us perform the linear transformation A on the overlapping sensitivity matrix

Ck, which likewise a�ects the noise covariance matrix Ψ.

C′k = ACk Ψm = C′kC′
†
k = AΨnA

† (4.3)

Inserting Equation 4.3 into Equation 4.2, it yields

σ2′

recon,R = [(C†kA†(AΨnA
†)ACk)−1

R ]k,k = min (4.4)

Minimization of the image noise in the whole folded ROI can be carried out by

the summation of minimized image noise in each voxel k.

∑
k∈ROIfolded

σ2
recon,R =

∑
k∈ROIfolded

[(C†kA†(AΨnA
†)ACk)−1

R ]k,k (4.5)

One demands that the newly generated m virtual coils be decorrelated, i.e. the

noise covariance matrix of the m virtual coils Ψm be equal to identity 1.

Ψm = AΨnA
† = 1 (4.6)

Let us de�ne transformation T which acts on the raw dataset as follows
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Ψ̂n = TΨnT = 1 (4.7)

Transformation T executes coil noise whitening, i.e. renders linearly independent

the separate receiver channels.

Substituting the whitened noise covariance matrix, described by Equation 4.7,

into the constraint for the newly derived m virtual coils, mathematically reformu-

lated by Equation 4.6, one �nds

Ψm = 1 = AΨ̂nA
† = AA† (4.8)

One can declare that the constraint for the m virtual coil elements to be decor-

related (Equation 4.6) translates into the constraint for A to be unitary (Equation

4.9) [15][16].

AA† = 1 (4.9)

Acknowledging the freshly derived result, one can establish requirements for Coil

Compression algorithms. When applying Coil Compression, one aims to minimize

image noise propagation enhancement (Equation 4.10), which is identical to maxi-

mizing the SNR in the entire ROI by maximizing the superimposed coil sensitivity in

all voxels (Equation 4.11). Independently form the above-mentioned reformulation,

constraint for A to be unitary holds. Equation 4.10 and Equation 4.11 are equal

as they can be easily transformed into one another with simply taking the inverse,

as denoted below. Equation 4.10 and Equation 4.11 are derived by substituting

Equation 4.9 into Equation 4.5.

∑
k∈ROIfolded

σ2
recon,R =

∑
k∈ROIfolded

[(C†kA†ACk)−1
R ]k,k = min (4.10)

∑
k∈ROIfolded

1

σ2
recon,R

=
∑

k∈ROIfolded

[(C†kA†ACk)R]k,k = max (4.11)

subject to A†A = 1

Computation of the aforementioned equations is demanding as desired linear

transformation A is situated in the core of the equations and computational numer-

ical iterative methods should be applied to �nd the extreme. Instead, an appropriate

approximation of A can drastically simplify the problem.

E�ectiveness and applicability of CC seriously relies on the approximation of A.

In the following sections, several approximative methods for SENSE & GRAPPA
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are derived and compared.

4.2 CC SENSE: Principle Component Analysis &

Optimized Transformation

Principle Component Analysis (PCA) is an e�ective method to reduce the dimen-

sionality of a problem [20]. PCA uses a linear transformation to alter an initial

dataset of possibly correlated variables into a linearly uncorrelated set of variables

called principal components. Linear transformation is de�ned in such a way that

the �rst principal component has the largest possible variance and each succeeding

component has the highest variance possible under the constraint that it is orthog-

onal to the preceding components [20]. Thus, the set of principle components form

an orthogonal basis.

Intuitively, PCA can be thought of as revealing the internal structure of the data

in a way that best explains the variance in the data. If a multivariate dataset in a

high dimensional space is analyzed, PCA can supply a lower-dimensional represen-

tation, i.e. a projection from a higher dimension into a lower dimension subspace.

Impulsively, the projection enables the dataset to be inspected from its most infor-

mative viewpoint [20], which is, mathematically speaking, done by selecting only

the �rst few principal components. By omitting principle components of minor con-

tribution to the representation, only a commensurately small amount of information

is lost. This explains how the dimensionality of the transformed data is reduced.

Let us de�ne matrix Q.

Q =
∑

k∈ROIfolded

CkC†k (4.12)

PCA performs a singular value decomposition (SVD) [21] on matrix Q such that

Q = VFV† (4.13)

where V is a unitary matrix, while F is a diagonal positive semi-de�nite matrix.

As Q is symmetric, SVD returns a lower and upper triangular matrix that can be

transformed into one another by a simple Hermitian adjoint. Since V is unitary,

its columns form a set of orthonormal vectors, which can be regarded as orthogonal

basis vectors.

SVD is a generalization of the eigenvalue decomposition of pure stretches in or-

thogonal directions [21]. Scaling factors of stretches of eigenvalue decomposition

translates in SVD under the form of matrix F. SVD can be composed of three suc-

cessive geometrical transformation: rotation (V), scaling (F) and another rotation
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(V†).

Approximation of matrix A can be e�ectuated if the �rst m rows of the unitary

matrix V† is selected, that is, the �rst m rows belonging to the m largest singular

values, regrouped in diagonal matrix F, is selected. Selection is carried out by

D = (id|0) with dimensions m× n. Noise whitening matrix T is also incorporated

into the de�nition of the approximation of compression transformation APCA.

APCA = DV†T (4.14)

It can be shown that APCA maximizes the sum de�ned by Equation 4.11 [15],

that is PCA maximizes the total amount of sensitivity in generated set of virtual

coils.

The herein derived APCA has one major fault: not only does it include weighting

according to the phase, but also according to the length of the sensitivity matrices in

a voxel [15]. Accordingly, PCA prefers voxels with high sensitivity over voxels with

low sensitivity, and therefore results in inhomogeneous virtual sensitivity maps. To

provide a clearer point on this major drawback, let us consider the following example.

Let APCA be such that a single voxel in the combined virtual sensitivity map receives

zero sensitivity. Due to the inversion in the images noise formula (SENSE g-factor

formula described by Equation 3.30), this very voxel becomes a singularity and

contributes an in�nite noise ampli�cation term to image noise, which is utmost

undesirable.

A solution to the problem can be achieved by rede�ning Equation 4.12 with

minding the orthonormalization of the superimposed sensitivity maps, as shown in

Equation 4.15. Orthonormalization is the key di�erence between PCA and the opti-

mized transformation (OPT). Consequently, angular di�erences of the superimposed

sensitivity matrices are taken into account, whereas the lengths are not. As a result,

a more homogeneous virtual sensitivity map can be achieved as all voxels are treated

identically.

By de�nition, applying the Moore-Penrose pseudoinverse instead of the simple

Hermitian adjoint in Equation 4.12, the vector lengths are omitted from consider-

ation as can be seen in Equation 4.15. P carries all desired features of Q without

taking into account the squared length of the overlapping sensitivity maps. Only the

relative phase is considered, which ensures a more homogeneous virtual sensitivity

map.

P =
∑

k∈ROIfolded

CkC−1
k,p =

∑
k∈ROIfolded

CkC†k(CkC†k)−1 (4.15)

Afterwards, SVD and the de�nition of the optimized coil compression matrix
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goes likewise as described above.

P = UGU† (4.16)

AOPT = DU†T (4.17)

4.3 CC GRAPPA: Geometric-decomposition Coil Com-

pression

So far coil compression based on SNR maximization has been considered. The

explicit knowledge of coil sensitivities to maximize SNR in the folded ROI have

been exploited. This type of coil compression is suitable for sensitivity-based PI

reconstructions like SENSE. On the other hand, data-based PI techniques, such as

GRAPPA, do not require the explicit knowledge of sensitivity maps, thus require a

slightly di�erent approach for CC derivation. It is noteworthy that the presence of

spatially varying sensitivity maps is crucial for data-based PI, thus implicit knowl-

edge of sensitivity maps is still required.

Noise covariance of di�erent receiver channels is taken into consideration. Noise

whitening is performed on raw k-space data, thus the noise becomes independently

identically distributed (IID) prior to any other transformation.

Since the readout direction is fully sampled in most in-plane PI techniques [12],

the spatial variation of sensitivity maps along this direction is not utilized for the

acceleration. Thus, at every location x, a two dimensional subspace vx(ky,kz) of

(ky,kz) data can be created [16]. Coil Compression is performed in the (ky,kz) all

along the x-axis.

Geometric-decomposition Coil Compression (GCC) algorithm can be formulated

as a minimization problem of Equation 4.18. One demands that Ax be unitary at

every location x, which serves as constraint.

min
∑
x,ky ,kz

||(Ax
†Ax − 1)vx(ky,kz||2 (4.18)

subject to Ax
†Ax = I

Pseudocode of GCC is denoted below:

1. Inverse Fast Fourier Transform (IFFT) of k-space multicoil data along the

readout direction into [x, ky, kz] coordinates.
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2. At each location x, construct a data matrix Xx in which each row consists of

all the vx(ky,kz) data from all individual original coils.

3. Perform SVD of Xx = UxΣxV†x then take the �rst m rows of Ux
† to form an

initial compression matrix Ax
0

4. Repeat step 2 and 3 for all position x.

However, virtual coil sensitivity smoothness is not assured in this step. Vir-

tual Coil Alignment is performed separately with an extra projection of the initial

compression matrix Ax
0 that have been derived for each location x.

4.3.1 Virtual Coil Alignment

Coil sensitivity smoothness is ensured in this step. The idea behind the alignment

is that coil sensitivity smoothness along the RO directions is crucial as unacquired

data are synthesized from data along this direction. It has been shown in previous

chapters that for accurate GRAPPA weights the phase of GRAPPA ACS must not

di�er considerably from the phase of the actual acquisition.

New compression matrices along the RO direction (Ax) are de�ned as a projec-

tion of the initial compression matrices (Ax
0).

Ax = PxAx
0 (4.19)

Alignment can be achieved by the following iterative optimization.

min
∑
x

||Ax −Ax−1||2F (4.20)

subject to Ax = PxAx
0

where PxPx
† = Px

†Px = I

where the norm || · ||2F stands for the Frobenius norm [11].

Equation 4.20 does not have a unique solution [16]. Px = I is de�ned at a speci�c

slice x for all the other slices. Assuming P1 = I, orthogonal alignment matrices Px

for all slices can be found sequentially.

1. Given Ax−1, de�ne Cx := Ax
0Ax−1

†

2. Perform an SVD on Cx such that Cx = UC
x ΣC

x VC†
x

3. Set Px = VC
x UC†

x and Ax = PxA0
x. This Ax minimizes the image noise de-

�ned in Equation 3.30.
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4. Repeat step 1-3 for all coordinates x for all slices.

Iterative de�nition of the projection, using compression matrices both at loca-

tions x and x−1, guarantees that the successive x locations are compressed similarly,

preventing any harsh jump or distortion.

After alignment, Coil Compression can be executed. Please bear in mind that

a one dimensional Fourier transform of the virtual dataset along x-axis must be

performed so that the original data structure is reset.
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Chapter 5

Implementation and Simulations

All of the aforementioned methods (SENSE, GRAPPA, CC SENSE & CCGRAPPA)

have been implemented in MATLAB R2015a (The MathWorks Inc., Natick, MA,USA).

Simulations were all performed on the 2D Shepp-Logan phantom representing a sin-

gle slice of a conventional 2D scan.

Similar concept has been applied for the discussion both on SENSE and GRAPPA.

Every simulation has been run with parameters denoted in Table 5.1. Please note

that in-plane PI techniques demand that the number of coils be greater than or even

to the acceleration factor, which has been respected throughout the simulations.1

Acceleration factor Number of physical coils
2 2,4,8,12,16,20,24,32,48,64
3 4,8,12,16,20,24,32,48,64
4 4,8,12,16,20,24,32,48,64
6 8,12,16,20,24,32,48,64
8 8,12,16,20,24,32,48,64

Table 5.1: Possible simulation parameter pairs for given acceleration factors and
number of physical coils.

Please note that, given the number of parameter pairs, only a few examples have

been outlined and shown in this thesis. Clinically relevant parameter pairs are also

more likely to be depicted in this work.

Validation of CC methods is a multistep procedure. Justi�cation of applicability

consist of the following stages: image quality observation, g-factor and noise ampli-

�cation evaluation and verdict on time gain. This thesis goes through these aspects

highlighting the key features to reach at a verdict on the possible applicability of

CC methods.

True bene�ts of Coil Compression can be considered if the slice dimension is not

omitted either. A conventional anatomical scan in clinical practice is composed of
1All of these simulations would fail at one point or another if the condition for overdetermined

equations did not hold.
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150-192 slices, whereas all simulations herein presented are performed on a single

slice. Thus, time gain should bear an even greater impact in real life applications,

as single-slice time gain results are to be multiplied by 150-192 for a more realistic

picture on time gain.

5.1 Coil Compression for SENSE

A coil compression criteria was unanimously established for all CC SENSE simula-

tions as follows. Singular values of matrices Q (belonging to PCA) and P (belonging

to OPT), described by Equation 4.12 and Equation 4.15 respectively, that are lower

than the 10 % of the maximal singular value of the given SVD are not taken into

consideration. Thus a non-hard-coded constraint is applied as compression standard

for all CC SENSE simulations.

Figure 5.1 depicts the singular values of matrices Q (belonging to PCA) and

P (belonging to OPT). It is clear that the singular values of P decline in a faster

rate than those of Q. This di�erence in the decline rate is due to the dissimilar

summation of sensitivities belonging to overlapping voxels. The de�nition of P

utilizes the pseudoinverse for the summation (Equation 4.15), while Q operates

only with the Hermitian adjoint of the overlapping sensitivity matrices (Equation

4.12). The latter de�nition results in unnormalized overlapping sensitivity maps as

both the length and the phase of the complex sensitivities are taken into account in

the de�nition of Q [16]. Unnormalized compression matrix Q brings about a smaller

possible compression rate and unsmoothness in the spatial distribution of the virtual

coil sensitivities. The former feature can be spotted on the gentler decline rate of

singular values of Q compared to those of P, while the latter feature can be detected

on the apparent break of listed singular values on Figure 5.1. The aforementioned

bene�cial attributes of P over Q make it more suitable for coil compression.

The applicability of CC methods is largely dependent on the time gain that can

be obtained. Figure 5.2 represents the change in the number of virtual coils sent to

reconstruction hardware (upper row) and the time gain (lower row) with respect to

the number of physical coils. Time gain is remarkable when a large set of physical

coils is applied. The reconstruction time depends on the square of the coils, while the

acceleration factor modi�es the coe�cients of the second degree polynomial. This

tendency is the outcome of the 3 nested loops that happen to be the core of the

reconstruction algorithm. Figure 5.3 depicts the relative time gain of CC SENSE

compared to conventional SENSE for better visibility and comparability.

It is crucial to highlight that above a certain number of physical coils (N) at a

given acceleration factor (R) the extent of compression saturates, i.e. the number of

virtual coils becomes constant (upper row of Figure 5.2). It would be a fair statement
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Figure 5.1: Visualization of normalized singular values of matrices Q (belonging to
PCA) and P (belonging to OPT). Normalization was performed so that the trends
of both singular value arrays could be compared on a single plot. Simulations were
performed with parameters R = 2 and N = 64. It is distinguishable that the singular
values of P decline in a faster rate than those of Q, which provides a better com-
pression. Moreover, there is an unmistakable break in the continuously decreasing
singular values of Q due to the unnormalized overlapping sensitivity maps.

that, if the g-factor does not increase either once the compression has saturated, the

compression algorithm has found the desired subspace spanned by the physical coils

[16], i.e. the compression has reached its reasonable limit. By comparing the lower

rows of Figure 5.2 and Figure 5.4, it is obvious that the trend in the g-factor change

and the number of virtual coils correlates. As the number of virtual coils saturates

so does the average g-factor. It is noteworthy that, while the saturation of OPT is

uninterrupted, the saturation of PCA is more chaotic. The �uctuations of the latter

can be justi�ed by the same argumentation that has been previously discussed;

unsmooth virtual coil sensitivities are created by the compression matrix APCA, as

it is originated from Q (Equation 4.14 ), and thus leads to diverse spatial noise

ampli�cation.

Figure 5.5 shows the geometric distributions of noise ampli�cation for SENSE,

PCA SENSE and OPT SENSE. Illustrated g-factor maps were chosen to re�ect

clinical applicability, as higher acceleration factors tend to result in low SNR and

aliasing artifacts. It is easy to perceive that the OPT SENSE results in the highest g-

factor, which may suggest high noise ampli�cation originated from OPT compression

algorithm. Nevertheless, taking into account the number of virtual coils used for

the reconstruction of PCA and OPT (Figure 5.2), OPT has a considerably smaller
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Figure 5.2: Compression factor (upper row) and reconstruction time (lower row)
for CC SENSE. Upper row: the number of virtual coils generated by compression
matrices APCA and AOPT is shown with respect to the number of physical coils
for acceleration factor R = 2, 3, 4. Lower row: the total reconstruction time is
represented with respect to the number of physical coils. Total reconstruction time
belonging to PCA and OPT were measured after CC, that is, the horizontal axis
represents the original number of physical coils and not the number of virtual coils
whose data was sent to reconstruction hardware.
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Figure 5.3: Relative time gain of CC SENSE. This �gure represents the fraction
of Original/PCA and Original/OPT reconstruction times that has previously been
depicted on the lower row of Figure 5.2. For large sets of physical coils and low
acceleration factors, which are clinically relevant cases, the relative time gain is
considerable; only 1/5 (R=2) or 1/4 (R=3,4) of the original time is needed for the
reconstruction.

number of virtual coils for a given acceleration factor compared to PCA. In addition,

smooth virtual coil sensitivities are guaranteed for OPT SENSE, which is hardly

the case for PCA SENSE. The generated virtual datasets, thus the runtime, are

substantially smaller for OPT SENSE compared to PCA SENSE. As a result, a small

deviation in g-factors distribution and amplitude is understandable and justi�ed.

Figure 5.6 is achieved by the voxel-wise division of pseudo multiple replica images

42



Number of Physical Coils
0 20 40 60

N
um

be
r 

of
 V

irt
ua

l C
oi

ls

0

20

40

60

R=2

Original
PCA
OPT

Number of Physical Coils
0 20 40 60

N
um

be
r 

of
 V

irt
ua

l C
oi

ls

0

20

40

60

R=3

Original
PCA
OPT

Number of Physical Coils
0 20 40 60

N
um

be
r 

of
 V

irt
ua

l C
oi

ls

0

20

40

60

R=4

Original
PCA
OPT

Number of Physical Coils
0 20 40 60

A
ve

ra
ge

 g
-f

ac
to

r

1

1.1

1.2

1.3

1.4

1.5
R=2

Original
PCA
OPT

Number of Physical Coils
0 20 40 60

A
ve

ra
ge

 g
-f

ac
to

r

1

1.5

2

2.5

3
R=3

Original
PCA
OPT

Number of Physical Coils
0 20 40 60

A
ve

ra
ge

 g
-f

ac
to

r

1.5

2

2.5

3

3.5
R=4

Original
PCA
OPT

Figure 5.4: Compression factor (upper row) and average g-factor (lower row) for
CC SENSE. Upper row: the number of virtual coils generated by the compression
algorithm with respect to the number of physical coils. Lower row: change of the
average g-factor with respect to the original number of coils. Correlation between
the average g-factor and the number of virtual coils is recognizable, which serves as
a justi�cation that the compression algorithm has found the desired subspace spanned
by the physical coils.

and the respective g-factors. Pseudo multiple replica images are acquired by running

the same reconstruction algorithm numerous times on the same pure dataset and

taking the standard deviation of all reconstructed images. Although, the dataset

must be the same, a randomized Gaussian noise is added to the dataset at each

loop to slightly vary initial conditions. Consequently, spatial distribution of noise

ampli�cation can be spotted. It is a simple, robust and accurate method for the

quanti�cation of SNR, but very much time-consuming [17]. Repetitions are gener-

ally set to a 100 or more. To save time and resources, g-factor, as an analytically

derived method, is usually considered for SNR quanti�cation. On the other hand,

as both methods quantify the noise ampli�cation, they can be applied to check one

another. The two quantities are proportional, thus expected to return a constant

spatial distribution. However, this is not the case. A spatially varying distribution

attributed to the given set is returned, namely the sensitivity pro�le of the physi-

cal/virtual coils. It is evident that for a low compression rate the sensitivity maps

are unanimous, as no considerable compression has been performed. Whereas higher

compression rates result in irregular sensitivity pro�les, since virtual coil sensitivities

can di�er considerably from the physical ones (Figure 5.6).
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Figure 5.5: SENSE g-factor maps with and without CC. Conventional SENSE, PCA
SENSE and OPT SENSE are regrouped vertically for di�erent acceleration factors.
Acceleration factor is kept constant vertically, while coil number N changes vertically
due to coil compression to observe its e�ect on noise ampli�cation. N indicates
the number of coils whose data was sent to reconstruction hardware, i.e. for PCA
SENSE and OPT SENSE N denotes the number of virtual coils.

5.2 Coil Compression for GRAPPA

Evaluation steps, introduced for CC SENSE, go likewise for CC GRAPPA. On the

other hand, the unanimous coil compression criteria was modi�ed to adapt to GCC

GRAPPA structure. Singular values of matrices Xx, described by Equation 4.18,

that are lower than the 40 % of the maximal singular value of the given SVD are

not taken into consideration.

Figure 5.7 shows the change in the number of virtual coils sent to reconstruction

hardware (upper row) and the time gain (lower row) with respect to the number of

physical coils. Not only is time gain of CC GRAPPA remarkable over conventional

GRAPPA, but comparing the relative time gain of CC GRAPPA to CC SENSE

(Figure 5.8 and Figure 5.3 respectively), it is even more obtrusive. The reconstruc-

tion time depends on the fourth power of the coils. This tendency is the outcome

of 4 nested loops that happen to be the core of the reconstruction algorithm.

Above a certain number of physical coils (N) at a given acceleration factor (R)

the extent of compression saturates, i.e. the number of virtual coils becomes constant

(upper row of Figure 5.7). G-factor saturation is also experienced (Figure 5.9),

henceforth, the compression has reached its reasonable limit. By comparing the

lower rows of Figure 5.7 and Figure 5.9, it is obvious that the trend in the g-factor
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Figure 5.6: Sensitivity pro�les acquired by the voxel-wise division of pseudo multiple
replica images and the respective g-factors. Di�erent cases for original SENSE,
PCA SENSE and OPT SENSE are regrouped vertically. Acceleration factor is kept
constant vertically, while coil number N changes vertically due to coil compression
to observe its e�ect on sensitivity maps. N indicates the number of coils whose data
was sent to reconstruction hardware, i.e. for PCA SENSE and OPT SENSE N
denotes the number of virtual coils. Pseudo multiple replica images were acquired
after a 100 repetitions. It is clear that the sensitivity reaches its minimum in the
center region which situates the farthest from any receiver coil. The more coil is
applied, the smoother the sensitivity pro�le is.

change and the number of virtual coils correlates. As the number of virtual coils

saturates so does the average g-factor.

Figure 5.10 shows the geometric distribution of g-factors for clinically relevant

acceleration factors. Undoubtedly, Coil Compression provoke noise ampli�cation,

as the spatial distribution of g-factors demonstrates. However, considering the time

gain due to GCC GRAPPA, noise magni�cations may be acceptable. Pseudo multi-

ple repcila images have also been derived for GCC GRAPPA. Voxel-wise division of

pseudo multiple replica images and the respective g-factors point out the underlying

sensitivity maps. Figure 5.11 also demonstrates the possibly appearing artifacts, as

middle regions su�er from remaining aliasing due to imperfect reconstruction.

5.3 Artifacts owing to Coil Compression

It is noteworthy that, by virtue of CC, artifacts are more likely to occur. Figure

5.12 demonstrates a few examples for conventional GRAPPA, CC GRAPPA and
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Figure 5.7: Coil compression factor (upper row) and reconstruction time (lower
row) for conventional GRAPPA and GCC GRAPPA. Upper row: the number of
virtual coils generated by compression matrices Ax is shown with respect to the
number of physical coils for acceleration factor R = 2, 3, 4. Lower row: the total
reconstruction time is represented with respect to the number of physical coils. Total
reconstruction time belonging to GCC were measured after CC, that is, the horizontal
axis represents the original number of physical coils and not the number of virtual
coils whose data was sent to be reconstruction hardware.
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Figure 5.8: Relative time gain of GCC. This �gure represents the fraction of Origi-
nal/GCC reconstruction times that has previously been depicted on the lower row of
Figure 5.7. For large set of physical coils and lower acceleration factors, which are
clinically relevant cases, the relative time gain is considerable; only a portion of the
original time is needed after CC.

di�erence images. Be that as it may, artifacts are not speci�c to CC, but rather

particular GRAPPA/SENSE related artifacts are magni�ed as a result of CC. The

e�ect of reduced FOV in PE direction is supposed to be eliminated by GRAPPA

reconstruction, while FOV in RO direction is large enough. Henceforth, all artifacts

occur in PE direction, as remaining overlapping is a considerable artifact of an

imperfect reconstruction. General SNR loss is also a common side e�ect of CC.
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Figure 5.9: Compression factor (upper row) and average g-factor (lower row) for
conventional GRAPPA and GCC GRAPPA. Upper row: the number of virtual coils
generated by the compression algorithm with respect to the number of physical coils.
Lower row: change of the average g-factor with respect to the original number of
coils. The correlation between the two quantities is recognizable. As the number of
virtual coils saturates so does the average g-factor, which means that the compres-
sion algorithm has found the desired subspace and reached its reasonable limits. The
average g-factor decreases under 1, which is due to the unrealistic features of the
Shepp-Logan phantom. Values of the darkest central regions, representing the cere-
bral aquaducts, are exactly set to zero in the analytic model, which under-represents
the noise ampli�cation in the given regions, as describes GRAPPA g-factor in Equa-
tion 3.40.
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Figure 5.10: G-factor maps for conventional GRAPPA and GCC GRAPPA. G-
factors are regrouped vertically for di�erent acceleration factors. Acceleration factor
is kept constant vertically, while coil number N changes vertically due to coil com-
pression to observe its e�ect on noise ampli�cation. N indicates the number of coils
whose data was sent to reconstruction hardware.
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Figure 5.11: Sensitivity pro�les acquired by the voxel-wise division of pseudo multi-
ple replica images and the respective g-factors. Acceleration factor is kept constant
vertically, while coil number N changes vertically due to coil compression to observe
its e�ect on sensitivity maps. N indicates the number of coils whose data was sent
to reconstruction hardware. Pseudo multiple replica images were acquired after a
100 repetitions. It is clear that the sensitivity reaches its minimum in the center
region which situates the farthest from any receiver coil. Also, sensitivity maps for
GCC GRAPPA indicate the presence of remaining aliasing, which is by virtue of
Coil Compression.
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Figure 5.12: Di�erential images of conventional GRAPPA and GCC GRAPPA im-
ages. Acceleration factor is kept constant vertically, while coil number N changes
vertically due to coil compression to observe its e�ect on image quality. N indicates
the number of coils whose data was sent to reconstruction hardware. Normalized
di�erence images of GCC GRAPPA and conventional GRAPPA are also displayed.
It is clear that the greater the compression factor is, the more likely that artifacts
occur. All artifacts emerge in the PE direction (vertical dimension) as expected.
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Chapter 6

In-vivo Measurements

The very same reconstruction algorithms, whose performance has been evaluated

during simulation, have been tested on real data.

All experiments were performed on a 3T clinical scanner (MAGNETOM Prisma,

Siemens Healthcare, Erlangen, Germany) equipped with 20-channel head-neck re-

ceiver coils. In accordance with institutional regulations, the involved volunteer

gave written informed consent before the study. All measurements were performed

using built-in manufacturer sequences with a GRAPPA 2 acceleration and 16 head

receiver channel on1. All experiments were performed at Brain Imaging Center,

Research Center for Natural Sciences, Hungarian Academy of Sciences.

The following nomenclature have been introduced to apply shorter notation on

displayed �gures; low, optimal and moderate compression designate that 90%, 70%

and 50% of the highest ranking singular values were kept for later use at the recon-

struction, respectively.

The order of evaluation follows the same concept that has been presented in the

previous chapter. No previously unknown quantity or method have been inaugurated

in this chapter. Detailed information on the �gures can be exerted from �gure

captions.

Figures are regrouped into two according to anatomical planes. Figure 6.1 shows

a T1-weighted anatomical brain images on the transverse plane, whereas Figure 6.4

displays the coronal plane of the same volunteer. All o�ine reconstructed images

with and without CC and all �gures herein displayed have been reconstructed and

generated by my own algorithms, except for reference images. Reference images

reconstructed by vendor's image reconstruction software have been imported from

DICOM format and read in by MATLAB.

14 receiver channels situated in the neck region were disabled, as their signal due to their spacial

location does not contribute considerably to the chosen ROI.
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Figure 6.1: T1-weighted anatomical brain images on the transverse plane. Refer-
ence image reconstructed by Prisma scanner (A) is displayed as well as o�ine re-
constructed images without CC (B), with optimal CC (C), low CC (D) and high CC
(E). High CC enhances GRAPPA-generated overlapping artifacts, as designated with
red arrows for better visibility. Furthermore, outstandingly bright voxels counter-
productively a�ect image contrast (E).
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All displayed images demonstrate a particular slice of a 2D anatomical scan. A

more accurate time gain for a complete anatomical scan can be established if the

single-slice time gain is multiplied by the number of slices, which is approximately

150-192 in clinical practice. Clearly, application of Coil Compression economizes

time, as it is displayed both on Figure 6.3 and Figure 6.6, which serves as a jus-

ti�cation of the motivation. Considerable time gain can be achieved, while image

quality degradation is minimal, if the right set of sequence and compression param-

eters are applied.

Figure 6.2: Di�erence images of original T1-weighted anatomical brain images on
the transverse plane depicted in Figure 6.1. Di�erence image of Prisma reference
image and original o�ine reconstructed image shows no deviation (A), i.e. limits on
numeric data representation occur. Whereas, in consonance with stronger compres-
sion ratio, images rebuilt from highly compressed data show considerable deviation
from reference image (D) and from other images gained from compressed datasets
(E). The more the di�erence image is structured, the less the compression is ef-
�cient. Artifacts are especially distinguishable on sub�gure (E), which belongs to
highly compressed dataset. The wrap-around on sub�gure (E) has been designated
with a red arrow on sub�gure (E) of Figure 6.1.
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Figure 6.3: On the left: g-factors for sub�gures (B), (C), (D), and (E) of Figure
6.1. Noise ampli�cation features of high compression (D) is remarkable as well as
the overlapping brain contour (D). The wrap-around on sub�gure (D) has been des-
ignated with a red arrow on sub�gure (E) of Figure 6.1 for better distinguishability.
On the right: average g-factor and relative time gain belonging of sub�gures (B), (C),
(D), and (E) of Figure 6.4. It shows clearly that the more compressed the dataset
is, i.e. the lower the number of virtual coils is, the higher the average g-factor is,
i.e. the higher the noise ampli�cation is.
Relative time gain plot is normalized using the reconstruction time needed for conven-
tional GRAPPA reconstruction (N=16). GCC GRAPPA reconstruction with opti-
mal CC (N=9) requires approximately 1/3 of the time of the conventional GRAPPA
reconstruction (N=16).
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Figure 6.4: T1-weighted anatomical brain images on the coronal plane. Reference
image reconstructed by Prisma scanner (A) is shown as well as o�ine reconstructed
images without CC (B), with moderate CC (C), negligible CC (D) and considerable
CC (E). Considerable CC enhances GRAPPA-generated overlapping artifacts, as
designated with red arrows for better distinguishability. CC generates substantial
artifacts around maxillary sinuses, more speci�cally at the border of the air-�lled
sinuses and the forming bone structure. Magnetic susceptibility changes signi�cantly
at the boundaries which is favorable for enhanced artifact occurrence.
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Figure 6.5: Di�erence images of original T1-weighted anatomical brain images on
the coronal plane depicted in Figure 6.4. Di�erence image of Prisma reference im-
age and original o�ine reconstructed image show no deviation (A), whereas, in
consonance with stronger compression ratio, images rebuilt from highly compressed
data (D) show considerable deviation from reference image and from other images
gained from compressed datasets (E). The more the di�erence image is structured,
the less the compression is e�cient. All CC images show major noise ampli�cation
around maxillary sinuses, independently from CC ratio, which is by virtue of intense
magnetic susceptibility alternation around the air-�lled oral cavities.
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Figure 6.6: On the left: g-factors for sub�gures (B), (C), (D), and (E) of Figure 6.4.
Noise ampli�cation features of high compression (D) around the maxillary sinuses
are outstanding. Major artifacts have been designated with a red arrow on Figure
6.4 for better distinguishability and comparability.
On the right: average g-factor and relative time gain belonging to sub�gures (B),
(C), (D), and (E) of Figure 6.4. It shows clearly that the more compressed the
dataset is, i.e. the lower the number of virtual coils is, the higher the average g-
factor is, i.e. the higher the noise ampli�cation is.
Relative time gain plot is normalized using the reconstruction time needed for conven-
tional GRAPPA reconstruction (N=16). GCC GRAPPA reconstruction with opti-
mal CC (N=5) requires approximately 1/10 of the time of the conventional GRAPPA
reconstruction (N=16).
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Chapter 7

Conclusion

This thesis provides a detailed theoretical overview of fundamental in-plane Parallel

Imaging techniques (SENSE & GRAPPA) and of the recently introduced, respective

coil compression methods (CC SENSE & CC GRAPPA). Coil compression methods

o�er an e�cient way to overcome data redundancy on account of multiple receiver

coils by compressing raw k-space data, thus drastically decreasing reconstruction

time and data size sent to reconstruction hardware.

I have implemented all introduced reconstruction techniques with the respective

Coil Compression methods in MATLAB environment, based on [12][13][14][15][16].

I have completed all simulations and in-vivo measurement reconstructions in MAT-

LAB environment.

I have shown that coil compression algorithms are worth being used once an

optimal set of parameters have been determined for the given measurement setup

and sequence type. Time gain and the change of average g-factor by virtue of

CC has been explicitly measured and coherently compared during simulations and

in-vivo measurements. I have demonstrated the capacity to reconstruct in-vivo

medical images from raw k-space data and to overcome compatibility issues of data

extracting from a commercially available medical MRI scanner. I have reconstructed

all images o�ine, whose quality is comparable to the image provided by the scanner.

I have validated image quality using di�erence images and g-factor maps.

Disadvantages of CC has been shown. Higher probability of artifact occurrence

due to the overuse of CC has been justi�ed both in simulations and in-vivo measure-

ments. Critical regions and characteristics of artifacts show correlation with daily

clinical experiences [23]. Accumulated evidence indicates that my algorithms are

indeed capable of reaching the same e�ciency in terms of reconstruction quality as

commercially available medical softwares. Determination of an optimal set of pa-

rameters for CC, depending on PI techniques and speci�c anatomical regions, needs

further investigation. Clinical introduction would also require major contribution of

radiologists.
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