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1 Abstract and motivation

The main motivation of this thesis is to bridge the theoretical results of the SVD �lter proposed

in my bachelor's thesis and the possibility of practical implementation in order to accelerate the

convergence of ML-EM PET image reconstruction without modifying the �x point of the algorithm

and deteriorating its stability to noise. To the best knowledge of the author and the editorial team

of Radiology and Oncology journal the SVD �lter method is a novelty in the �eld of PET image

reconstruction.

The SVD �lter has proven to be very e�cient with respect to convergence acceleration but due

to the need of a numerical singular value decomposition it brings serious computational challenge to

the role making the implementation nearly impossible and highly impractical. The implied storage

requirement is also problematic. In order to solve this problem, a (de)convolution model is presented in

this thesis to approximate the e�ect of the SVD �lter without introducing its calculation and storage

related di�culties. The key point of a proper deconvolution approach is the ability of accounting

for the position dependence of the kernel to be deconvolved which is an inherent property of the

SVD-�lter. If this requirement is met the (de)convolution approach is a faithful approximation of the

SVD-�lter but excluding the computational di�culties. As a powerful solution, a subkernel method is

presented which is a novel contribution altogether with the overall SVD-�ltering and its deconvolution

model.

The resulted deconvolution-like �ltering successfully abolishes the material dependent inhomo-

geneity artefact which previously appeared when faithful physical modelling was used in the back

projection. Also, overall convergence speed is increased signi�cantly above the level achieved by the

algorithm when simpli�ed modelling is used in the back projection giving the best reconstruction

result so far.

The presented method was tested on simulations with di�erent mathematical phantoms and an

FDG micro Derenzo phantom measurement as well, and the pitfalls and di�culties are discussed

together with possible future development directions.

2 Introduction

In emission tomography maximum likelihood expectation maximization (ML-EM) image recon-

struction technique [1, 2] has replaced the analytical approaches (e.g. the widely used �ltered back

projection) in several applications, since ML-EM o�ers improvements in spatial resolution and stability

due to the more accurate modelling of the system and to the ability of accounting for noise structure [3].
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In exchange ML-EM has only a linear rate of convergence [2] and its computational cost is still tedious

even with the rapidly increasing processing capacity of current computers. Thus a signi�cant part of

recent research activities aims at accelerating the algorithm [3�5]. Another important property partly

connected to the low convergence rate is the maximal resolution achievable for a given reconstruction

method given a certain noise level towards which most of the developments are directed [6�9]. In order

to achieve improvement in both convergence rate and spatial resolution an ML-EM positron emission

tomography (PET) reconstruction code has been developed with graphical processing unit (GPU)

based Monte Carlo (MC) engine [10]. GPUs parallel threads allow for running the inherently parallel

neutral particle MC transport simulations approximately hundred times faster than on a comparably

priced CPU thus signi�cantly reducing the time required for the reconstruction. As increased com-

putational capacity allows for better physics modelling the main novelty of this code is the ability of

full particle transport modelling as accurate as it is worthwhile in hope of improving image quality [11].

Contrary to expectations such faithful physics modelling in the back-projecting (BP) step of the

algorithm causes strong artefacts: modelling positron range leads to tissue dependent inhomogeneity

artefacts in the reconstructed image. Furthermore, these inhomogeneities disappear when simpli�ed

MC simulations are used without. All the di�erences between the two cases occur in the system matrix

(derived from the MC simulations) of the BP step. These di�erences were analysed with respect to

the convergence properties and stability to noise in a smaller test system by means of singular value

decomposition (SVD) which is a powerful tool when analyzing rectangular matrices. According to the

SVD analysis there happens to be a signi�cant advantage of the matrix belonging to the simpli�ed

simulations in terms of both singular values and vectors that characterized the convergence properties

and stability of the algorithm. In other words more accurate physical modelling is less e�cient in

terms of convergence and these di�erences explained the perceived artefacts.

Taking advantage of these results an a posteriori �ltering matrix was created applied in each

iteration after the BP step with which these di�erences could be further ampli�ed for speeding up

the convergence, but without spoiling the stability to noise. However, the proposed �ltering method

requires the calculation and storage of a matrix of a size Number of voxels × Number of voxels . For

a real scanner it can take up to several terabytes.

The main contribution of this thesis is the bridging of the theoretical results and the practical

implementation of the proposed �ltering method which was impossible before. A convolution model

is formed in order to replace the �lter matrix multiplication in the back projection with deconvolu-

tion which obviates the need of the computationally intensive and usually infeasible numerical SVD.
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Figure 1: Cooregistration of functional (in colour) and anatomical (grayscale) data

The proposed deconvolution is easy to calculate by means of convolution theorem and fast Fourier-

transform (FFT) and only requires the storage of the point spread function (PSF) of the system.

Despite all the calculations were implemented in MATLAB the proposed method increases the du-

ration of one ML-EM iteration only by 10% (MATLAB calling takes most of the extra time), but

accelerates the reconstruction to perform signi�cantly better than the best setting so far.

The text of this section is partly published in [19]

2.1 Basics of PET

Positron Emission Tomography (PET) is a functional imaging modality. It observes physiological

functions in vivo by looking at for example blood �ow, metabolism, neurotransmitters and radiola-

belled drugs and capturing their spatial distribution and kinetics. PET is frequently used in clinics

to monitor the increased �uorodeoxyglucose(FDG) uptake of cancerous or in�amed cells in order to

help diagnosis and guide therapy.

PET has been proven a powerful tool in preclinical imaging as well, among others in the �eld of

drug tests and cognitive disease related medical research.

In order to give useful information anatomical data is also needed which is used for the cooregis-

tration of the functional image. Certain algorithms also use the anatomical data in the reconstruction

itself to generate the functional image. Further reading can be found in [12].
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2.2 The PANNI code

A 3D MC based ML-EM image reconstruction code named PANNI (PET Aimed Novel Nuclear

Imager) has been developed in the framework of the TeraTomo project in the Intitute of Nuclear

Techniques of BME. [13,14]. PANNI is a MC based image reconstruction software written for GPUs

using C and CUDA environments surmising roughly 40 000 lines [11]. The key feature of our software

is the possibility of faithful MC modelling which accounts for positron range, gamma photon-matter

interaction and detector response supported by advanced variance reduction methods. Detectors

around the object are positioned on a quasi-cylindrical surface with dodecagon cross section. Detector

response is either simulated or a pre-generated tabulated response function may be used. Positron

range modelling simpli�es to the following probability density function [15]

ρ(r) = aA2re−Ar + bB2re−Br (2.2.1)

with r being the positron range distance, a, A, b and B material dependent constants. As sampling

each of the terms is equivalent to sampling the sum of two exponentially distributed random variables

x can be obtained by using double exponential sampling [16]. Advanced variance reduction methods

are implemented for source angular sampling outgoing direction and energy biasing and for free �ight

sampling. The MC engine has been validated against MCNP5 [17]. The code is capable of simulating

108 photon pairs per second on a commercially available GPU (NVidia GeForce 690). Both the

forward projection and the BP steps are carried out via the MC method. In the BP step some of the

physics modelling may be turned o�. The code has been tested with two geometries, a sophisticated

scanner geometry (�full system�) and a simpli�ed smaller system (�1D model�). Acquisition geometry

for the full system can be set as wished, in our current setup it consists of a dodecagon with inscribed

circle radius of 8.7cm, packed on each side with an array of 39× 81 LYSO detector pixels of 1.17mm

sided squares comparable to a small animal PET scanner similar to the Mediso nanoScan PET/CT

scanner (�gure 2). Coincidence counting is accepted between detector pixels on opposite and next to

opposite dodecagon sides (1:1 and 1:3 coincidence). If not stated otherwise the voxel space of the full

system is divided into 128×128×128 voxels (0, 3mm sided) and contains a water-cylinder (light grey

area in �gure 3 and 4) except for a smaller cylindrical area containing bone material (dark grey area

in �gure 3 and 4). Activity phantom for the evaluation is a cylindrical ring of 15O partially located in

bone material (the more commonly used 18F gives less conspicuous results). From now on simpli�ed

modelling means the neglect of the positron range e�ect in the back-projecting MC simulations in

contrast with faithful modelling which accounts for positron range.
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Figure 2: The sophisticated scanner geometry of PANNI17

The voxel space of the 1D model is a 38, 4mm long interval containing 256 voxels half of which is

located in bone material the other half in water. Detector pixels are assigned in two parallel sections

each containing 81 crystals of a size 1, 17× 1, 17mm (see �gure 5). Every pixel is in coincidence with

every pixel on the opposite side. Roughly speaking the 1D model is a cross-section of the full system

geometry of PANNI.

2.3 Notations

If not stated otherwise the following notations are used:

∗ stands for convolution

x: vector of activity estimate in the voxels, x ∈ RNvoxel
≥0

A: system (response) matrix

Ax: forward projection

ym: vector of measured data

y = Ax: vector of forward-projected data

yr: pointwise (i.e. Hadamard) ratio vector of measured and forward-projected data yr =
ym
y

vi: ith singular vector corresponding to voxel space

σi: ith singular value
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Lor: Line of response

ui: ith singular vector corresponding to Line of response - space

T : in superscript means transpose

ATyr: back projection

Posrange: Positron range

BP: back projection

BP posrange OFF: simulation neglects positron range in the BP

BP posrange ON: simulation accounts for positron range in the BP

MC: Monte Carlo

FWHM: Full Width at Half Maximum

FWTM: Full Width at Tenth Maximum

SVD: singular value decomposition

RL: Richardson-Lucy deconvolution

L2−norm: Vectorial L2−norm divided by the L2−norm of the activity distribution and multiplied

by 100: L2 − norm = 100 ∗
√∑Nvoxel

i=1 (xi,phantom−xi,recon)2∑Nvoxel
i=1 x2

i,recon

CC − norm: Vectorial cross-correlation norm, normalized to the 0 − 100 interval: CC − norm =

100 ∗ ‖1− xTi,phantomxi,recon

||xi,phantom||||xi,recon||
‖

2.4 ML-EM reconstruction

Maximum Likelihood Expectation Maximization is an iterative method to �nd maximum likelihood

or maximum a posteriori (MAP) estimates of parameters in statistical models (x), where the model

depends on unobserved latent variables (z). The EM iteration alternates between performing an

expectation (E) step, which creates a function for the expectation of the log-likelihood evaluated

using the current estimate for the parameters (x(n)) and the given realisation (y), and a maximization

(M) step, which computes parameters maximizing the expected log-likelihood found in the E step:

• E - step:

Q(x, x(n)) = Ez|y,x(n) [logL(x(n), y, z)] (2.4.1)

• M - step:

x(n+1) = argmax
x

[Q(x, x(n))] (2.4.2)

In emission tomography the latent variable zij denotes the (unobserved, latent) number of events

detected in ith LoR (yi) which come from the jth voxel. Therefore
∑

j zij = yi and zij follows Poisson
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distribution. Its expected value conditioned on given yi: E[zij|yi] =
Aijxj∑
j Aijxj

yi as its conditional

distribution is multinomial.

After performing E and M steps the following iteration formula is obtained [2]

x
(n+1)
i = x(n)


∑

iAij
yi

[
∑
j Aijxj]∑

iAij

 (2.4.3)

Square brackets contain the result of the so-called forward projection and the braces contain the result

of the so-called back projection.

2.5 Anomalous behaviour of PANNI code

The key feature of the PANNI code is the use of full MC transport modelling by following particles

through every possible collision in the object of observation as faithfully to the laws of nature as

practically worthwhile thanks to GPU implementation and the applied advanced variance reduction

methods. However, faithful physical modelling in the backprojection seemed to be deteriorating with

respect to the quality of the reconstructed image.

Two reconstruction results were compared for the sophisticated scanner geometry: one with full

physical modelling in the BP and one omitting positron range in the BP. After 80 iterations faithful

modelling produced the reconstruction in �gure 3. The cross section of the cylindrical ring phantom

in radial direction is originally a box function which is blurred due to gridding and averaging in a

given voxel (similarly to partial volume e�ect). Therefore, it can be well approximated by a Gaussian

with a Full Width at Half Maximum of 3 voxels which is indicated by the red line on the �gure. The

Full Width at Half Maximum/Full Width at Tenth Maximum is calculated by �tting a Gaussian in

radial direction along the ring separately for each angular position with resolution of 1 degree:

Accounting for positron range in the BP caused systematic inhomogeneity in the reconstructed

image. The activity estimation in the bone material is appropriate (FWHM = 3,5 voxel) in contrast

with the activity of the voxels located in water which is underestimated (FWHM = 5 voxels). The

inhomogeneity reduces with simpli�ed BP, when positron range is neglected in the MC simulation.

Also the FWHM is reduced in the water area see �gure 4.

The e�ect of modelling any physical phenomenon appears in the system matrix, thus any possible

analysis aims at �nding the di�erences in the BP system matrix caused by positron range. Such an

analysis was performed in [18] and [19] based on SVD and focusing on the convergence properties of

the resulted reconstruction algorithm. (The SVD calculations are similar to those in [20])
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Figure 3: Top view of the reconstruction of the cylinder-ring mathematical phantom of the full system

with faithful modelling in the BP. Light gray area represents water, dark gray area represents bone

material. Underestimated activity and increased FWHM/FWTM can be seen for voxels located in

water. FWHM and FWTM are calculated along the ring. Red line indicates the phantom ideal

FWHM.

Figure 4: Top view of the reconstruction of the cylinder-ring mathematical phantom of the full system

with simpli�ed modelling in the BP. Homogeneous activity estimate and FWHM can be seen along

the ring. Neglect of the positron range in the BP abolished the artefact of �gure 3. and phantom

ideal FWHM is reached.
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2.6 SVD analysis and convergence properties

The e�ect of positron range modelling and the average positron range is accounted for by the system

matrix. As an obvious tool for the analysis of rectangular matrices (as usually there is more LoR

than voxel), the algorithm and the BP step are examined by means of singular value decomposition.

SVD is a factorisation of any m×n real or complex matrix A of the form A = UDV T . The following

notation is used: U is an m × n matrix, D and V are n × n square matrices. In general, matrix

V has k orthogonal columns where k is the rank of the system matrix A. V can be completed to a

n × n dimensional matrix by adding n − k orthogonal vectors from the null space of AT to form a

basis in the voxel space. The �rst k columns of U are also orthogonal and can also be completed to

a basis in the sinogram space by adding m − k orthogonal vectors from the null space of A. In this

last case, D is zero �lled to a m × n dimensional matrix. In the point of view of our analysis the

completion of U is not needed and we chose the nomenclature where U has only n (as A has full rank,

thus k = n) columns. D and V are n× n in this case. SVD was used for the analysis of convergence

speed of the reconstruction algorithm with respect to the applied BP. According to reference [18, 20]

the speed of convergence of PET ML-EM algorithm particularly depends on the singular values of the

BP system matrix. Singular values represent relative weights for the voxel space basis vectors (i.e.

corresponding voxel space singular vectors) in the update process of the previous activity estimate

in a given iteration. Sinogram space singular vectors can measure the information content of a given

measurement-forward projection Hadamard ratio in the corresponding BP step by means of Picard

condition formalism which states that for the existence of a square integrable solution to the problem

y = A x the following has to be true (A is the integral operator the discretization of which is the

system matrix A) [21]:
∞∑
i=1

(
uTi y

σi
)2 <∞ (2.6.1)

In case of matrices instead of integral operators, the discrete Picard condition requires the spectral

coe�cients |uTi y| to decay faster in average than the singular values [21]. Despite BP is not a direct

inversion from this point of view the faster is the decay of the spectral coe�cients |uTi yr| of the ratio

as the index increases the heavier the blurring of the BP. Higher frequency components level o� at

a plateau which is dominated by noise and can be regarded as an error-level estimate [21] because

these components do not contain information for the corresponding BP. Even accounting for voxel

space e�ects only (e.g. positron range) sinogram space singular vectors are not the same for the

simpli�ed and faithful modelling. The BP step of the algorithm back projects the Hadamard ratio of

the measured and the currently forward-projected data
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ATyr = V DTUTyr (2.6.2)

The aforementioned di�erence in the sinogram space basis a�ects the UTyr product, i.e. the spectral

coe�cients of the Hadamard ratio.

In consequence of the analysis above, it can be concluded that modelling the positron range i.e.

accounting for a physical e�ect in the voxel space in�uences the convergence properties of the re-

construction algorithm in three di�erent manners, which are explained in details in the following by

means of the 1D model:

Figure 5: Mathematical phantom and system geometry for 1D model. 1-128 voxels are located in

bone material, 129-256 voxels are located in water

The 1D model contains only positron range modelling, neither gamma photon-matter interaction

nor detector response modelling is included. Detection is based on the angle of view of the detector

from a given voxel. The two analysed settings are: positron range neglected (BP posrange OFF)

and positron range modelled (BP posrange ON) in the BP. Forward projection always accounts for

positron range.

• Di�erences in singular values:

Comparing the BP posrange OFF and BP posrange ON case in terms of singular values of the

system matrix, �gure 6 shows the positive di�erence for the �rst 133 index belonging to the

former setting.

• Di�erences in voxel space singular vectors:

In the light of the convergence analysis of reference [18,20] smaller singular values mean that the

14



Figure 6: Singular values of the system matrix for positron range neglecting and modelling case.

Increased values of the former imply the faster convergence of the corresponding (�rst 133) basis

component of the activity estimate

corresponding frequency components of the solution are later reconstructed with positron range

modelling compared to the positron range neglecting BP. This space frequency characterises the

singular vectors of the voxel space, which is a second but not less signi�cant di�erence between

the two types of system matrices(see Figure 7).

Figure 7 on the left accounts only for the symmetries of the system while the right �gure re�ects

also the tissue map of the volume. As the average positron free path is much longer in water

than in the bone material space frequency of every basis vector is smaller in the water area.

Thus the reconstruction of the activity of these voxels is signi�cantly slower and this property

is the reason of the obtained artefact resulted from faithful modelling in the BP and partly the

solution to the perceived anomalous behaviour.

• Di�erences in the sinogram space:

The third and �nal di�erence occurs in the sinogram space basis vectors with which the measurement-

forward projection Hadamard ratio can be unfolded in a given iteration. The absolute value

of the obtained spectral coe�cients can be seen in Figure 8 after 15 iterations for the positron

range neglecting and modelling case respectively (the spectrum varies slowly through iterations).
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Figure 7: One of the voxel space singular vectors of the system matrices corresponding to positron

range neglect (left - BP posrange OFF) and positron range modelling (right - BP posrange ON).

BP posrange OFF re�ects only the symmetries of the geometry. BP posrange ON accounts for the

material map as well, increased position uncertanity due to longer average positron free path implies

lower space-frequency in water area

Figure 8: Absolute value of the spectral coe�cients of the measurement-forward projection Hadamard

ratio in the LoR basis corresponding to the positron range neglect (left - BP posrange OFF) and

positron range modelling (right - BP posrange ON). Faster decay means less information gathered

as the coe�cients of the horizontal plateau are corrupted by noise thus it represents an error level

estimate. Due to one to one correspondance property of SVD between LoR and voxel space singular

(basis) vectors these basis coe�cients of the activity are not hoped to be correctly estimated

Faster decay in the spectral coe�cients equals to heavier blurring in the BP [21]. This means

that the positron range modelling gathers less information from the Hadamard ratio in a given

iteration than the positron range neglecting BP. This also implies the faster convergence.
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To summarise the �ndings above, all of the three SVD matrices from the factorisation of the system

matrix were analysed. The results explained the perceived artefact as the convergence speed of

the scheme with positron range modelling BP was material dependent and the further advantage

of the simpli�ed BP in terms of overall convergence speed. These properties led to the systematic

inhomogeneities in the reconstruction.

Despite the convergence speed analysis explained the perceived artefact the result is still anomalous

as full physical modelling means additional information in the reconstruction (compared to simpli�ed

modelling) which should re�ect in better image quality. The next subsection discusses this anomalous

behaviour and presents the advantage of the faithful modelling.

2.7 Advantage of faithful modelling

Despite the lower and material dependent convergence speed, it was showed in [18, 19] that after

high number of iteraions the reconstruction algorithm with full physical modelling in the BP which

therefore uses matched projector pairs can reach better activity estimate, than the one with unmatched

projector pair resulted by simpli�ed modelling which therefore only approximates the solution even

in the noiseless case [1,2,5]. Figure 9 shows convergence of the solution through iterations in the 1D

model. L2− norms of the distance of the solution from phantom distribution are plotted against the

number of iterations. Figure 9 on the left represents the noiseless test case while on the right captures

very similar characteristics but in a simulated (noise containing) reconstruction. It can be seen that

the algorithm with simpli�ed back projection approximates the optimum faster but converges to

another �x point afterwards due to unmatched projector pair (probably this is the reason of the

accumulating activity in the corner of the reconstructed images when simpli�ed modelling is used in

the back projection, discussed later). Contrarily, the initial convergence speed with faithful modelling

is lower but after numerous iteration it can achieve at least the same L2 − norm, but does converge

to the desired �x point. This means that the optimal stopping criterion is much more relaxed with

faithful modelling in the BP because the reconstruction gives the optimal result in a wide interval

of iteration number. This result resolves the contradiction as additional information indeed leads

to better image reconstruction (as �nding an optimal stopping criterion is even nowadays an active

research area) thus the perceived anomaly was only apparent.

These advantageous properties imply that the faithful modelling in the back projection is worth

the e�ort only the convergence of the iteration scheme has to be accelerated. If it is successfully done,

a robust reconstruction algorithm is resulted which is more stable to noise with a much more relaxed

stopping criterion compared to the algorithm with simpli�ed modelling in the back projection. Also,
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Figure 9: L2−norm curves for noiseless (on the left) and MC simulated (on the right) reconstructions

comparing the convergence path of the settings using faithful and simpli�ed modelling in the back

projection

the activity accumulation in the image corners is avoided. In the next subsection such a possible

solution for convergence acceleration is presented.

2.8 Proposed improvement

According to the discussion of the previous subsections, simpli�cation of the MC modelling in the

BP just luckily a�ects the behaviour of the algorithm from a mathematical point of view. However this

form is not the ideal BP operator but the one that is easy to implement without much modi�cation

to the original algorithm. To obtain a better BP operator the previously listed advantages can be

ampli�ed with a posteriori manipulation and a better form can be reached.

In order to combine the positive features of both simpli�ed and faithfully modelling BP settings,

namely the accelerated convergence and proper �x points respectively the only possible degree of

freedom for the modi�cation is to further increase the singular values of the BP operator using full

physical modelling, similarly to the accompanying e�ect of the simpli�ed modelling. In this case U

and V matrices of the SVD are unchanged. The possible �x points of the algorithm can be obtained

from the next equations (ratio is in a Hadamard sense) as the update process multiplies (also in

Hadamard sense) the current estimate by 1 when the following is true:

ATyr
|A|

=
ATyr
AT1LoR

= 1vox (2.8.1)

Rearranging:

AT (yr − 1LoR) = AT ỹ = 0vox (2.8.2)
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Using the dyadic de�nition of SVD:

AT ỹ =

rank(A)∑
i=1

σrvru
T
r

 ỹ (2.8.3)

vr and ur are the columns of matrix V and U respectively. As V is an orthogonal matrix the linear

combination above equals to zero precisely when every σruTr ỹ coe�cient equals to zero. The singular

values are all nonzero thus the uTr y dot product equals to zero for ∀r. This implies that UTy = 0vox.

Matrix U remains the same with singular value modi�cation so the possible �x points are unchanged.

The easiest way to modify the singular value spectrum of the BP system matrix is the application

of a matrix of the form:

B = V D∗V T (2.8.4)

D∗ is the matrix with which D∗D has the desired form, i.e. the desired singular value spectrum

in the diagonal. Applying the SVD �lter to the ML-EM algorithm (in matrix form) results in the

following formula (BT = B as being symmetric and V TV = I as V is orthogonal. I is the identity

matrix. The ratio and the multiplication in the update process of x(n) is in Hadamard sense):

x(n+1) = x(n)
BATyr
ATB1LoR

= x(n)
V D∗V TV DUTyr

V D∗TV TV DTUT1LoR
= x(n)

V D∗DUTyr
V D∗TDTUT1LoR

(2.8.5)

In noiseless (test) case, i.e. when there is no noise added to simulations, this form is (the scalar

multiple of) the identity matrix, in agreement with the convergence analysis [5,20,22], as the singular

values are clustered together as far as possible. The SVD �lter fastens the convergence with two orders

of magnitude [18]. Illustratively, Figure 10 shows the L2 − norm curves of a noiseless reconstruction

of the mathematical phantom using the SVD �lter in the 1D model. The L2 − norm curve of the

unmodi�ed ML-EM reconstruction is also plotted for comparison.

However, the SVD �lter cannot be applied straightforward for the real, noisy case. The mea-

surement process equals to Ax = UDV Tx where x stands for the activity distribution. Thus, the

measurement attenuates its frequency components according to the singular value spectrum (multi-

plication with matrix D) and adds some noise to the result. As so, only those components which �t

to the discrete Picard condition can be ampli�ed.

The resulted method was tested in the 1D model and gave promising results [19]. Figure 11 shows

a representative reconstruction result comparing di�erent back projection settings with respect to

L2 − norm. The mathematical phantom of the 1D model (see �gure 5) is reconstructed with faithful

modelling, simpli�ed modelling and SVD �ltered faithful modelling in the back projection, L2−norms

after a given number of iteration are plotted.
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Figure 10: In both reconstructions full physical modelling was used. Comparison of the unmodi�ed

ML-EM algorithm (on the left) and its SVD �ltered version (on the right). Important to highlight the

di�erent range of the x− axes. Noise is neglected at this point, the reconstructions aim at verifying

the result of the convergence analysis

Despite the promising reconstruction results in the 1D model, there were some problems with the

full system implementation, therefore the applicability of the SVD �lter in the proposed form was

very limited. B matrix is of a size Nvoxel×Nvoxel which is in the order of terabyte with respect to

variable size. Generally, it is impossible to e�ciently store such a matrix directly for the full system

on one hand, and even more di�cult to calculate on the other hand, because the method requires the

SVD of the system matrix, which is even several folds bigger than matrix B.

In the following sections a possible remedy for this problem is presented which opens the way

towards practical implementation and everyday use of the proposed modi�cation. The performance

of the resulted method is evaluated on the full system by means of several simulated phantoms and

a measurement as well.

3 Practical implementation of the SVD �lter

This section describes the main theoretical contribution of thesis. The SVD �lter has proven to

be very e�cient but its capacities could not be exploited for a real size system due to computational

issues. This problem is solved with the theoretical considerations detailed in the following.

The e�ect of the multiplication of matrix B = V D∗V T with any voxel space vector equals to
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Figure 11: The L2-norm of the di�erence between the activity distribution and the current estimate

after a given number of iterations. Smaller value means better agreement. Reconstruction with

SVD �lter outperforms the best setting so far in terms of faster initial convergence and the farther

starting point of increasing discrepancy due to semi-convergence and unmatched �x point resulting in

more relaxed stopping criterion. Also the faster initial convergence of positron range neglecting back

projection can be seen compared to positron range modelling back projection (without �ltering) in

agreement with the convergence analysis

the following: unfolding the vector in the eigenbasis of the voxel space, multiplying the resulted

basis coe�cients pointwise with the eigenvalues of B (which equal to the diagonal entries of D∗) and

transforming back the result into the voxel space. The multiplication with the eigenvalues in the

spectral domain counteract the decay of the singular values of the system matrix i.e. the blurring of

the corresponding compact operator.

The process is analogous to conventional deconvolution except for the used eigenbase. Conventional

deconvolution implies Fourier basis which is the eigenbase precisely when the operator composition of

a consecutive forward projection - back projection can be discretised as a circular matrix i.e. ATA = C

where C is a Nvoxel × Nvoxel circular matrix. Despite this is rarely the case for a general setup

a reasonable approximation can be made. Observing the structure of matrix B (see �gure 12) it

happens to be approximately circulant which may have been expected from its deconvolution-like

acting. The discrepancy (compared to circulant form) comes from the position dependence of the
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latent (de)convolution. Position dependence arises due to material map, scanner geometry and the

proximity of the edge of the voxel space where the neighbourhood of a given voxel is di�erent from

that of a more central voxel. The eigenbase of a given system inherently accounts for these e�ects,

hence the structure of matrix B.

Figure 12: Mesh plot of matrix B and a characteristic (50th) row of the matrix for the 1D model

In conclusion, a convolution approximation which can account for position dependence is the

voxel space is a strong candidate for the replacement of the multiplication with matrix B in order

to avoid computational di�culties and therefore can worth a consideration. The details of such

an approximation are presented in the following subsections, with the corresponding concepts and

notations.

3.1 Deconvolution

Unwanted convolution is an inherent problem in transferring analogue information. Deconvolution

is an algorithm-based process used to reverse this e�ect on the recorded data. In general, the objective

of deconvolution is to �nd the solution of a convolution equation of the form:

f ∗ g = h (3.1.1)

h is the recorded signal, f is the data to be recovered and g is the convolution kernel of the corrupting

process. Its inversion is simple in the Fourier domain using the convolution theorem:

f = F−1
{
F{h}
F{g}

}
(3.1.2)
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However, in physical measurements, the situation is usually closer to:

(f ∗ g) + ε = h (3.1.3)

ε represents the unavoidable noise. Consequently, the inverse problem is ill conditioned and regulari-

sation is required, but the exact data is still not hoped to be recovered. The quality of the recovered

approximate solution highly depends on the noise level of the measurement and the applied regu-

lariser. In the point of view of the applied algorithm deconvolution processes can be classi�ed into

two groups, direct and iterative methods. Roughly speaking, direct methods use a regularisation

term in the Fourier inversion, iterative methods are controlled though the number of iterations as a

regularisation parameter. Being a complete analogue of ML-EM reconstruction (for Poisson noise),

Richardson-Lucy (abbreviated as RL from now on) algorithm can be an obvious candidate for the

deconvolution. With normalised convolution kernel the formula looks like as follows (the ratio and

the multiplication is in Hadamard sense, g means the complex conjugate of g):

f (n+1) = f (n)

(
gT ∗ h

x(n) ∗ g

)
(3.1.4)

Or, in the computationally more e�cient Fourier form:

f (n+1) = f (n)

(
F−1

{
F{g}F

{
h

F−1{F{f (n)}F{g}}

}})
(3.1.5)

The choice of the RL method is implied by the following considerations: e�ciently deconvolves

Gaussian blurring in presence of Poisson noise which is the case in the current setup and location

dependence can be more easily incorporated being iterative method which contains only forward steps

i.e. convolutions.

As the e�cient algorithm is given the remaining task for the deconvolution is to �nd the convolution

kernel. In this current problem the undesired convolution is the blurring of the back-projecting

operator which is unavoidable and location dependent as well. Suppose, that there is an ideal back-

projecting operator which back projects a given sinogram space signal to the voxel space ideally i.e.

without any blurring. Then the latent convolution kernel blurs this resulted voxel space distribution

so that it coincides with the result of the Monte Carlo simulated back projection.

According to the SVD of the system matrix and the one to one correspondence of the left and right

i.e sinogram and voxel space singular vectors the blurring of a consecutive forward projection - back

projection the contribution to the resulted blurring is equal for both projections:

A = UDV T (3.1.6)

AT = V TDTU = V TDU (3.1.7)
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ui =
Avi
σi

; vi =
ATui
σi

(3.1.8)

If σi = 1∀i a voxel space distribution is forward projected without any blurring to the sinogram space

and also the sinogram distribution is back projected into the initial distribution. In this imaginary

situation the image of a point source is the point source itself. However, this is never the case. The

forward projection weights the spectral coe�cients of any voxel space distribution with the diagonal

entries of matrix D before mapping it to the sinogram space, and similarly the back projection also

weights the spectral coe�cients of any voxel space distribution but after it is mapped to the voxel

space from the sinogram space. This weighting is responsible for the blurring of the operator and is

modelled as a convolution in the voxel space with a given kernel. From now on this kernel is denoted

by g.

According to the convergence analysis only the blurring caused by the back projection has to be

deconvolved. Therefore, an advantage of the symmetric blurring contribution model is that only the

result of the back projection has to be modi�ed which can be performed solely in the voxel space

where the physical e�ect are well known and there is no need for deconvolution in the sinogram space.

This symmetry property of the system matrix (and the corresponding operator) also signi�cantly

facilitates the calculation of g. The image of a point source (after forward projection-back projection)

is easy to simulate (measured data cannot be used for the point spread function (PSF) determination

because the PSF of the back projection is in demand. Back projection is always MC simulated,

therefore simulation is required) and with the notations and considerations above can be modelled as

follows (noise is neglected at this point):

h = ATAx = V D2V Tx := g ∗ g ∗ x (3.1.9)

From now on g ∗ g is referred to as the PSF of the system. Once the PSF is known from either

simulation or measurement g is hoped to be found as well. The deconvolution is then performed with

kernel g and this process well approximates the e�ect of the multiplication with matrix B, therefore

the SVD-�lter becomes possible to apply on a real size system which is a big step towards practical

implementation and usability.

The remaining task after the model formation is the collection of the physical e�ects of PET

imaging which cause blurring giving contribution to the PSF of the system. Then, a suitable smooth

function is needed to �t on the simulated PSF in order to avoid noise ampli�cation in any further

calculation. Once the �tting is successful and a proper smooth representation of the PSF is given,

kernel g can be computed for the deconvolution.
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3.2 Modelling of the PSF

The PSF of the system can be obtained from point source simulation. As it was highlighted

in the previous subsection, simulation is used in every PSF calculation of this thesis and is always

recommended if the proposed method is used. Despite its simplicity the resulted PSF is always

contaminated by statistical �uctuations therefore the deconvolution becomes unstable. To overcome

this di�culty the PSF must be �tted with analytical functions. In the following the relevant physical

e�ects and their analytical �t functions to model the resulted blurring (in the voxel space) are itemized.

• Positron range: the density function of the positron free path can be �tted with biexponential

curve, the direction distribution is isotropic [23]

• Acollinearity: the voxel space blurring caused by acollinearity can be well approximatex by a

Gaussian [23]

• Scatter in the detector and the variance of penetration depth: Gaussian �t is satisfactory [23]

• Scatter in the imaged volume: the �t of the sum of multiple Gaussians is required [24]

• Geometric coverage of the voxel space by the LoRs: Gaussian [23]

The consecutive convolution with the individual e�ects results in the convolution with the PSF of

the system. As the convolution of Gaussian is also Gaussian the PSF itself can be well approximated

with the sum of multiple Gaussians. Multiple di�erent Gaussians are required to modell scattering

in the voxel space and also to approximate the biexponential characteristics of the positron range.

In the reconstructions of this thesis the sum has three terms (regardless of the o�set) as the sum of

three Gaussians has proven to �t the PSF e�ciently.

The �tting process is one of the key points of the method because the agreement of the resulted

PSF (and kernel g) with the corresponding real function has the highest impact on the performance

of the proposed algorithm. Therefore, the �t function has to be as close as possible to the real

latent function coming from the physics of the system and also the �tting procedure itself has several

constraints in order to let the deconvolution perform properly.

3.3 Fitting the PSF

In order to �t the PSF one iteration step with PANNI code was performed. The voxel space was

homogeneously �lled by the given material (simulation consisted of water, bone and plexi glass) and

an 15O point source (δi) was placed in the middle of the voxel space i.e. in the middle of the simulated
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nanoPET geometry (identi�ed as the ith voxel with 1D list ordering). 2 × 1012 positron was used

to simulate the "measurement" and in the back projection as well. As the �rst iteration only back

projects the "measured" dataset which is in this case the (simulation) the forward projection of the

point source the result is no other than the PSF:

ATAδi = g ∗ g ∗ δi = PSF (3.3.1)

Next, the sum of three Gaussians was �tted to the PSF. To facilitate the �tting procedure, the

separability of the Gaussian kernel has been exploited. A multidimensional Gaussian is separable

i.e. it can be constructed as the direct product of 1D Gaussians [24]. Therefore, instead of �tting a

sum of three 3D Gaussians onto the PSF directly which would be hardly feasible and unsatisfactory

with respect to precision (according to the e�orts and attempts of the author), the sum of three 1D

Gaussians was �tted onto the line pro�les of the PSF along all the three main axes: x - transverse, y -

sagittal and z - coronal (taking into account the circular symmetry of the PET scanner the transverse

and sagittal pro�les are the same). The result of the �t in water �lled voxel space is presented for

illustration:

• Gaussian: Gi(x) = h0 + Axexp
−( x−x0

width
)2

Figure 13: Transverse pro�le Figure 14: Coronal pro�le Figure 15: Sagittal pro�le

• Sum of three Gaussians: Gi(x) = h0 + A1,xexp
−( x−x01

width1
)2
+ A2,xexp

−( x−x02
width2

)2
+ A3,xexp

−( x−x03
width3

)2

Figure 16: Transverse pro�le Figure 17: Coronal pro�le Figure 18: Sagittal pro�le
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Once the 1D �t was performed three 3D Gaussians were constructed from the three terms of the

�tted 1D Gaussians. Finally, the three 3D Gaussians were added, hence the PSF (Figure 20,23). In

mathematical form the procedure looks as follows:

PSF = h0+
3∑

i=1

Gi,transverse⊗Gi,sagittal⊗Gi,coronal = h0+
3∑

i=1

Ai,xAi,yAi,ze
−(

x−x0,i
widthi,x

)2−(
y−y0,i
widthi,y

)2−(
z−z0,i
widthi,z

)2

(3.3.2)

1D �tting is relatively easy, the only constraint is the equality of the relative weights of the indi-

vidual Gaussians in the three term sum for all the three directions, i.e Ai,x = Ai,y = Ai,z = Ai ∀i,

because Ai weights the ith 3D Gaussians in the three term sum, hence there is no degree of freedom

for Ai,j's to be di�erent for given i and di�erent j (this latent degree of freedom comes from the 1D

�tting approach).

This requirement was usually very hard to met. The �t of the coronal and transverse (/sagittal)

pro�les resulted in quite di�erent Ai weights, so the Ai,x = Ai,y = Ai,z = Ai ∀i constraint was

successfully met only after several iteration of the individual �ts when Ai was manually constrained

and �ne tuned in the range of the resulted Ai,j's trying to obtain the best �t for the individual pro�les

using the same Ai for every pro�le (and leaving only the FWHM of the directions in the 3D Gaussians

as a free parameter for the �t). However, the result was still not satisfactorily precise in some cases.

The proper �t of the PSF is a remaining challenge and it could signi�cantly improve the performance

of the proposed algorithm.

From the line pro�le �t, it would be possible to simply compose the dot product of the three 1D

pro�le, i.e the �tted sum of 1D Gaussians.

PSF = h0 +
3∑

i=1

Gi,transverse ⊗
3∑

i=1

Gi,sagittal ⊗
3∑

i=1

Gi,coronal (3.3.3)

Despite this approach is much more easier as the coe�cient constraint is avoided, it gives an erroneous

result with respect to the PSF (Figure 21,24). However, it still has proven quite e�cient in most of

the reconstructions.
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Figure 19: Measured PSF in wa-

ter �lled voxel space, z = 0 cross

section. C12 symmetry due to

dodecagon detector panel can be

seen

Figure 20: Sum of three 3D

Gaussians composed each from

the direct product of the corre-

sponding terms in the �tted 1D

pro�les, z = 0 cross section

Figure 21: Direct product from

the �tted sum of 1D Gaussians,

z = 0 cross section

Figure 22: Measured PSF in wa-

ter �lled voxel space, y = 0 cross

section.

Figure 23: Sum of three 3D

Gaussians composed each from

the direct product of the corre-

sponding terms in the �tted 1D

pro�les, y = 0 cross section

Figure 24: Direct product from

the �tted sum of 1D Gaussians,

y = 0 cross section
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Once the PSF is �tted properly the remaining task for the deconvolution is the calculation of kernel

g from the relation PSF = g ∗ g. This implies a square root approach when g is calculated as the

square root of the PSF.

3.4 Square root of the PSF

In the previous subsection the calculation of the PSF was presented. However, in order to reproduce

the e�ect of the multiplication with matrix B the convolution kernel g is required. In the following

the 1D case is used for sake of simplicity for the derivation but the separability of the kernel implies

the generalisability. Using the matrix notation of SVD and the convolution model for the forward

projection - back projection composition the following is true:

CPSF = Cg∗g = C2
g ≈ V D2V T (3.4.1)

CPSF and Cg is the matrix belonging to the convolution with the PSF and g respectively. To get matrix

Cg the square root of CPSF is needed. In general, an n×n matrix with n distinct nonzero eigenvalues

has 2n square roots. However, as the V D2V T is a positive de�nite matrix it has precisely one positive

de�nite square root called the principal square root [25] which equals to V DV T as all the singular

values (diagonal entries of matrix D) of the system matrix are positive. The blurring interpretation

of the matrix composition also implies the positive de�niteness. Similarly, it can be shown that the

eigenvalues of Cg are real, Cg being the circulant matrix corresponding to the vector which contains

convolution kernel g: [g0, . . . , gn]. As g is supposed to be symmetric its Fourier-transform F {g} is

real symmetric [25] which is no other than the eigenvalue spectrum of Cg:

Cg = F−1n diag(F {g})Fn (3.4.2)

Fn is the n-dimensional discrete Fourier-transform. The same holds for matrix CPSF . This implies

that the calculation of the suitable square root is as follows:

• Simulation of the PSF

• Fitting the sum of three Gaussians to the simulated PSF

• Fourier-transform the result

• Take the absolute value of the Fourier spectrum (in order to avoid imaginary square root) and

take its square root
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• Use the square root in the Fourier formulation of the forward-problem type RL deconvolution

to deconvolve kernel g of both the nominator and the denominator in the back projection of

ML-EM formula (multiplications and the ratio is in Hadamard sense):

(de)nominator(k+1) = (de)nominator(k)
(
F−1

{
F{g}F

{
h

F−1{F{(de)nominator(k)}F{g}}

}})
(3.4.3)

k ∈ {1, . . . , K} indexes the number of iterations, K is the maximum number of iterations which

serves as a regularisation parameter.

Hence the modi�ed ML-EM formula:

x(n+1) = x(n)
BATyr
ATB1LoR

= x(n)
Dð{ATyr}

Dð{AT1LoR}
(3.4.4)

Dð denotes deconvolution with respect to kernel g.

At one point of the derivation special care shall be taken. The eigenvalue spectrum of matrix

CPSF i.e. the Fourier-transform of the PSF is not guaranteed to be positive (but it guaranteed to be

real) [25], so any sign change caused by taking the absolute value would spoil the PSF = g ∗ g square

root model of the PSF, i.e. that the convolution with the PSF can be written as a double convolution

with the kernel g. However, the derivation above is not restrictive thanks to the special form of the

PSF (PSF = G1 +G2 +G3 where Gi is Gaussian ∀i). Due to the linearity of the Fourier-transform

and the special invariance of the Gaussian function, the Fourier-transform of the sum of Gaussians is

real and positive, therefore taking the absolute value makes no change:

F {PSF} = F {G1 +G2 +G3} = F {G1}+ F {G2}+ F {G3} (3.4.5)

The Fourier-transform of a Gaussian is again a Gaussian:

Gi(x) =
1√
2πσ2

e−
x2

2σ2 (3.4.6)

Di�erentiating:
dGi(x)

dx
= − x

σ2
Gi(x) (3.4.7)

Applying Fourier-Transform on both sides (G̃i is the Fourier-transform of Gi):

iωG̃i(ω) =
1

iσ2

dG̃i(ω)

dω
(3.4.8)

Rearranging:
dG̃i(ω)

G̃i(ω)
= −ωσ2dω (3.4.9)
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Figure 25: Sum of 3 Gaussians �tted to the

Fourier-transform of the transversal line pro-

�le of the PSF (water)

Figure 26: Sum of 3 Gaussians �tted to the

square root of the Fourier-transform of the

transversal line pro�le of the PSF (water)

Integrating the di�erential equation from 0 to ω:

lnG̃i(ω)− lnG̃i(0) =
σ2ω2

2
(3.4.10)

G̃i(0) = 1 as Gi(x) is normalised to 1, therefore lnG̃i(0) = 0. After exponentiating:

G̃i(ω) = e−
σ2ω2

2 (3.4.11)

This implies that the Fourier-transform of the PSF and hence the eigenvalue spectrum of CPSF is pos-

itive valued, so there is no contradiction in the derivation of the convolution kernel g. g is the principal

square root of the PSF, consequently F {g} is also positive valued, and using the Taylor expansion of

the square root and the multiplication invariance of Gaussians [26], g is also well approximated with

the linear combination of Gaussians in good agreement with the physical intuition:

For all these derivations to be true the special invariance property of the 3D PSF �t function has

to be highlighted.

4 Reconstruction results

The applicability of the convolution model to matrix B opens the way for the SVD �lter towards

practical implementation. The PSF can be stored in an array which has the same size as the voxel

space, so means no di�culty at all. RL deconvolution is easy to implement, the convolution steps

can be replaced by FFTs and run on GPU for faster computation. The modi�ed ML-EM algorithm

was tested with PANNI on several simulations. The deconvolved ML-EM algorithm uses full physical

modelling in the back projection in all cases (If deconvolution is not used, this setting is denoted as

"without deconvolution"). The reconstructions used the cylinder ring phantom for comparison with

respect to inhomogeneity artefact, a simulated Derenzo phantom and a measured Derenzo phantom.
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4.1 Homogeneous cylinder ring phantom

The reconstruction of the homogeneous cylinder ring phantom observes the presence of the inho-

mogeneity artefact with the deconvolved back projection. 128×128×128 voxel space, 0.298mm sided

voxels and 2× 109 positron used in each of the 80 iterations. 120 RL iteration is performed in every

ML-EM iteration. The input data is the simulation of an 1000s long measurement of 15O isotope, the

result can be seen in Figure 27. Figure 28 shows the line pro�le of the voxel space summed along the

z − axis.

Figure 27: The result of the reconstruc-

tion after 80 iterations, voxel space is

summed along the z-axis

Figure 28: Line pro�le of the reconsructed activity along

the orange line in �gure 27. Identical FWHM and activity

estimate can be seen regardless of the material map

Deconvolved back projection successfully makes the artefact disappear and the peak activity es-

timates are identical (up to the noise level) in bone and water area. The only remaining artefact is

the "double step" in the estimated activity on the bone-water material border along the ring. This

artefact also appears in Figure 3 when full physical modelling is used in the back projection and is not

present in Figure 4 when simpli�ed modelling is used. This suggests, that the deconvolution is not

perfect with respect material map induced position dependence incorporation, and therefore is unable

to make this "double step" disappear. The limitations of the homogeneous PSF approximation and

possible solutions are discussed later.

However, quantitative results are more promising. Figure 29 shows the L2−norm of the di�erence

of the reconstructed estimate and the phantom distribution with respect to the number of iterations.

The deconvolved ML-EM algorithm with full physical modelling achieves faster initial convergence and
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much better activity estimate in every iteration. Also, the initial faster convergence of the simpli�ed

back projection can be seen compared to full physical modelling (without deconvolution) similarly

to the result obtained from the analysis with the 1D model. No additional �ltering was used in the

deconvolved reconstruction, the reconstruction with simpli�ed modelling in the back projection used

trimmed median �ltering to be able to give any result. This suggest that the original noise stability

of full physical modelling is preserved to high extent.

Figure 29: The L2−norm of the deviation of the activity estimate from the ideal through iterations.

Lower value means better agreement and usually better reconstruction. However,this meric gives no

information about the contrast. After 80 iterations the simpli�ed modelling and the full physical

modelling without deconvolution achieves the same L2 − norm, but the former still shows the inho-

mogeneity artefact and hence the estimate is far from the ideal, while the latter estimate is far from

ideal due to noise build up.

Based on the test simulation with the cylinder ring phantom it can be concluded that deconvo-

lution approximation of the SVD �ltering method successfully reduces the perceived inhomogeneity

artefact and at the same time increases the overall speed of convergence of the full physical modelling

back projection signi�cantly above that of the simpli�ed one. However, incorporating the position

dependence of the PSF still there remained to solve. Even in the case of a relatively simple phantom

and material map the algorithm was unable to remove a signi�cant artefact arose from the presence

of a material border. In a more complex situation like a Derenzo phantom or a real (pre)clinical mea-
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surement more signi�cant deteriorations are expected. So, it is important to itemize the main factors

which cause position dependence and discuss the possibility of any incorporation to the deconvolution

model. These factors are analysed in the following with a proposed solution as well.

5 Position dependence of the PSF

So far the PSF used for the deconvolution process was simulated by means of a point source placed

in the middle of the scanner geometry. However, it is a well known result of PET imaging that

the PSF of the system is not homogeneous but position dependent within the scanner. This section

analyses the e�ect of the central PSF approximation in the deconvolution and discusses the possible

remedies and performance improvements.

5.1 Position dependence in due to scanner geometry

Dodecagon scanner geometry can be well approximated by a circle so rotational symmetry in the

x− y plane is a reasonable assumption. Therefore, the position dependence of the PSF is signi�cant

in radial direction and along the z − axis. For testing, the voxel space is still 128 × 128 × 128

but the linear voxel size is doubled: 0.596mm so that the outer voxels are located outside of the

detector ring in the z − direction and closer to the detector ring in radial direction. The input data

is the simulation of a 15O measurement and the iteration uses 2 × 1012 positron in agreement with

previous PSF simulations. First, the point source is placed in the (48, 0, 0) position, i.e. located on

the x − axis in the 48th voxel 24, 885mm apart from the center. The PSF can be seen in Figures

30,31. The distortion comes from rather edge e�ects i.e. the fact that there is no voxel after the 64th

coordinate thus the neighbourhood of the voxels located at the edges of the voxel space is di�erent

from that of the more centered ones. The similarity with the central PSF (PSF0) is measured by

means of cross-correlation norm (CC): CC(PSF, PSF0) = 100

(
1−

∣∣∣∣ PSFTPSF0√
||PSF ||2||PSF0||2

∣∣∣∣). PSF and

PSF0 denote the vector of 1D list ordering of the 3D PSFs. In this case, the similarity is 66, 37%.

Second, the point source is placed in the (0, 0, 48) position, i.e. located on the z − axis in the

48th voxel 24, 885mm apart from the center which is already outside of the scanner as the edge of

the detector panel is at 22, 815mm in the z − direction. The PSF can be seen in Figures 32,33. No

distortion can be seen and the similarity with the central PSF is 93, 84%.

The similarity results above suggest that edge e�ect can cause signi�cant distortion in the PSF

compared to the central value (PSF0) even when the edge of the voxel space is far from the detector

panel, thus there is no real geometry dependence introduced. Also, the assumed symmetry of the

34



Figure 30: PSF in (48, 0, 0) position, transverse

view

Figure 31: PSF in (48, 0, 0) position, coronal

view

Figure 32: PSF in (0, 0, 48) position, transverse

view

Figure 33: PSF in (0, 0, 48) position, coronal

view

PSF is broken. Another signi�cant e�ect occurs on material borders, i.e. when the center of the

PSF is close to another material/tissue type which is almost always the case due to the spread of the

PSF. Consequently, using only the cenral Gaussial as the overall PSF is a very rough approximation.

A real anatomical structure can introduce various voxel con�gurations considering the neighbouring
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materials and their relative positions. This means that even the Gaussian �t is infeasible for a precise

description of every voxel and the corresponding PSF.

First, the position dependence due to scanner geometry is discussed. As this gives the less sig-

ni�cant contribution to the PSF distortions the following principal component - like method was

not incorporated to the deconvolution process (as increased the computation time linearly with the

number of principal component kept) but it can be important for further improvement and �ne tuning.

5.2 Karhunen-Loève PSF decomposition

A more complex approximation of modelling the position dependence of the PSF is the Karhunen-

Loève decomposition which is related to principal component analysis. PSFs {P ∗i }Ni=1 have to be

simulated at various points of the voxel space to capture the dominant structures in the di�erences,

then their covariance matrix is composed: Cij =< P ∗i , P
∗
j >. The {pi}Ki=1 basis PSFs of the voxel

space are obtained from the eigen decomposition of matrix C as follows:

pi =
K∑
j=1

xijP
∗
j (5.2.1)

xij denotes the jth coordinate of the ith eigenvector. Then the position dependence of the PSF is

modelled by weight �elds {ai(u, v)}Ki=1. The PSF (x, y, z) at a given (x0, y0, z0) point:

PSF(x0,y0,z0)(x, y, z) =
K∑
i=1

ai(x0, y0, z0)pi(x, y, z) (5.2.2)

The remaining di�culty is that the behaviour of {ai(u, v)}Ki=1 weight �elds has to be modelled over

the image domain so that they can be expressed as continuous coe�cient �elds (usually interpolation

is used). This type of decomposition can well approximate the changes in the PSF due to geometry

and voxel space edge e�ects, but increases dramatically the computation time and the corresponding

deterioration is has not proven to be signi�cant. Contrarily, the position dependence due to material

map is a key factor and the following subsections aim at its incorporation to the deconvolution process.

5.3 Incorporating material dependence

Karhunen-Loève decomposition gives the possibility of accounting for the geometry related distor-

tions of the PSF. However, according to the test simulations performed and analysed in section 5.1

the distortion is not signi�cant in z − direction, i.e. along the symmetry axis of the PET scanner

where the PSF has smaller spread, and the radial distortion has smaller importance as usually the
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imaged object is located further from the edges of the voxel space in the x − y plane, i.e. in those

direction where the PSF has large spread.

Furthermore, simulations showed that the most signi�cant distortion in the PSF is introduced near

the material borders where the PSF spreads to another type of material. Figures 34,35 illustrates this

phenomenon in the voxel space used in section 2.5 and section 4.1 for the homogeneous cylinder ring

phantom. At the border of the bone cylinder and the water signi�cant distortion can be seen.

Figure 34: PSF distortion on bone-water border,

transverse view

Figure 35: PSF distortion on bone-water border,

coronal view

Having a closer look on �gures 34,34 it is suggested that using one single PSF in the deconvolution

process is a very rough and insu�cient approximation if material borders are present which is almost

always the case. Nor the Gaussian �t is appropriate neither the symmetry is true, therefore a solution

has to be found which allows for these assumption on which the deconvolution model has been built

so far.

In order to model the material dependent characteristics of the system the following method is

proposed. Once the activity of a voxel located in e.g. water reaches the bone-water border pending

one of the convolution steps of RL, in the remaining part of the convolution step it has to propagate

according to the bone speci�c PSF. Converting this into mathematical form the convolution kernel g

has to be divided into subkernels generalizing the square root taking step of the derivation is section

3.4. Performing convolution N times with the N th root kernel results in the convolution with kernel

g. Then every convolution step of RL is divided into N subconvolutions. After every subconvolution
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the activity which crossed material border is assigned to the voxel group corresponding to the new

material. In the voxel space of section 2.5 and section 4.1 this means that the activity coming from

the water area crossing the bone-water border is deleted from the 3D array stacking the activity in

water and added to the 3D array corresponding to activity in bone area.

At this point the semigroup property of the Gaussian kernel can be exploited [28]. It was concluded

that the convolution kernel g can be well approximated as a sum of Gaussians. Therefore, the same

N th root calculations are valid than in section 3.4 for the square root of the PSF. This means that in

the deconvolution process in every forward step the kernel g can be divided into N subkernels denoted

by g 1
n
(which equals to the N th principal root of kernel g) and the convolution can be performed in

N consecutive steps:

g = g1/n ∗ · · · ∗ g1/n (5.3.1)

Then in each subconvolution step the activity contributions are revised with respect to material map

and the material speci�c PSF can be used for a given area containing a given material:

gmaterial = gmat1
1/n ∗ · · · ∗ g

matn
1/n (5.3.2)

mat1, . . . ,matn denotes the material in which the activity is located in the 1st, . . . , nth subconvolution

step. To validate the algorithm a PSFs located on bone-water material border was simulated and

compared to the PSF g ∗ g built from subconvoloutions according to the the derivation above:

PSFmaterial = gmaterial ∗ gmaterial = gmat1
1/n ∗ · · · ∗ g

matn
1/n ∗ g

mat1
1/n ∗ · · · ∗ g

matn
1/n (5.3.3)

If not stated otherwise the reconstructions in the following used 10 subkernels in the RL iterations.

This number has proven a proper compromise between computation time and precise approximation

of the real PSF and also o�ers a tuning possibility with respect to image quality versus invested time.

Figure ?? shows the simulation of a point source placed in the center of the voxel space, therefore

close to bone-material border. The simulation used 2 × 1012 positron. Figure ?? shows the corre-

sponding PSF obtained from the (subkernel) convolution of a point source (placed into the same

central voxel) with PSFmaterial using 10 subkernels. The similarity is 92, 18%, so it can be concluded

that the proposed subkernel approach well approximates the real behaviour of the PSF, hence the

deconvolution can account for material dependence to a high extent.

Once the proposed algorithm can account for the material map in the voxel space the biggest

requirement with respect to performance is met, so signi�cant improvement in the reconstruction

quality is expected. The reconstruction results of the proposed method tested on simulation and

measurement are presented in the following subsections.
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Figure 36: Distortion on bone-water border, sim-

ulated PSF, summed transverse view

Figure 37: Distortion on bone-water border, sub-

kernel convolved PSF, summed transverse view

5.4 Homogeneous cylinder ring phantom v2

In subsection 4.1 the deconvolution method was tested on the cylinder ring phantom and proved its

e�ciency as successfully abolished the inhomogeneity artefact and accelerated the overall convergence

speed of the reconstruction. However, the method was still not able to handle the "double-step"

artefact on the bone-water material border along the activity ring. As the PSF in water is more

spread than the PSF in bone ML-EM algorithm with full physical modelling in the back projection

tends to assign the activity on the bone-water border rather to the voxels containing bone than to

water �lled ones. Therefore this artefact is also an attribute of faithful physics modelling together with

the inhomogeneity artefact. In agreement, reconstruction scheme with simpli�ed modelling introduces

none of the these artefacts.

Despite the impressive results, the proposed deconvolution method with homogeneous PSF could

not handle the "double-step" artefact because it arose from the latent material map and the presence of

material border. As a �rst test for the subkernel approach a reconstruction with the same parameters

as in subsection 4.1 was performed. Figure ?? shows the resulted image summed along the z − axis.

Signi�cant improvement with respect to activity homogeneity on the material border can be seen, the

use subkernels in RL iterations reduced the "double-step" artefact to a high extent. For comparison

zoomed images of the corresponding parts of the ring with the following settings are presented in

�gures ??,??,?? respectively: subkernel approach, homogeneous PSF and without deconvolution.
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Figure 38: Reconstruction after 20 iterations,

summed transverse view. The "double-step"

artefact is signi�cantly reduced even after 20 it-

erations

Figure 39: Zoomed part of �gure ??

Figure 40: Corresponding zoomed part of �g-

ure 27 where homogeneous PSFs were used in

the deconvolution

Figure 41: Corresponding zoomed part of �g-

ure 3 where no deconvolution was used with the

fully physical modelling BP
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Figure 42: Derenzo phantom, transverse view Figure 43: Derenzo phantom, coronal view

5.5 Simulated Derenzo phantom

The deconvolution method was tested on the simulation of a Derenzo standard PET phantom

which is full of material borders, so is a strong candidate for testing the e�ectiveness of the subkernel

approach. Standard PET phantoms allow for inter-scanner or inter-reconstruction comparison. One

of the most common quality control phantoms for nuclear medicine imaging is the Derenzo phantom.

The phantom pattern, shown in �gures 42,43 is a series of positron emitting rods separated by twice

their diameter in a triangular close-packed con�guration. Several rod diameters are typically employed

as a way to determine the diameter at which resolution breakdown occurs [27]. In this current setup

the diameter of the rods varies between 0.7mm and 1.2mm.

The voxel space is 200×200×200, voxels are 0.1907mm sided, the iterations use 5×109 positrons.

The body of the phantom is composed of plexi glass, the phantom volume (rods and closing plates)

is �lled with water (containing the activity). A measurement of 15O is simulated as input data.

The reconstructions used simpli�ed modelling (reference setting) and full physical modelling with

subkernel deconvolution in the back projection for performance comparison. As it was highlighted in

section 2.7 simpli�ed modelling results in activity accumulation in the image corners. For quantitative

comparison two metrics are used, L2−norm and CC −norm. In the former case this corner activity

is untouched, while in the latter case a band of 10 voxel is neglected on all the six sides of the cubic

voxel space (CC −norm is always normalised into the 0− 100 interval, so the truncation of the voxel
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Figure 44: Derenzo phantom reconstruction,

summed transverse view after 10 iteration with

simpli�ed modelling in the BP. Activity accumu-

lation in the corners can be seen

Figure 45: Derenzo phantom reconstruction,

summed transverse view after 10 iteration with

subkernel deconvolution in the BP

space is possible in contrast with L2 − norm which gives smaller number if smaller number of voxel

is used). This means that the disadvantage of the simpli�ed modelling is manually removed and the

deconvolved back projection has to prove more e�ciency in this handicapped situation. Figures 44

and 45 shows the reconstructions after 10 iterations. The results corresponding to simpli�ed modelling

are located on the left, those corresponding to the deconvolved full physical modelling are located on

the right. For qualitative comparison CC−norms are plotted in �gure 46 and L2−norms are plotted

in �gure 47. It can be concluded that the deconvolved scheme represents introduces much faster initial

convergence but after a characteristic number of iterations the decay of the norms �attens and the

reconstruction with simpli�ed modelling gives better qualitative result. At this point it has to be

highlighted that the activity accumulation in the corners was neglected. Otherwise, the L2 − norm

shows signi�cant advantage on the side of the deconvolved full physical modelling.
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The �attening of the CC−norm after a characteristic number of iterations is surmised to originate

from the quality of the �t of the PSF. Once the reconstruction resolution reaches the precision of the

PSF �t the deconvolution loses its impact and the further (CCL2)norm path becomes very similar to

the one speci�c to the full physical modelling without deconvolution. This happens almost regardless

to the number of RL iterations in the deconvolution process i.e. the amount of regularisation. Below

a certain amount (i.e. above a certain number of RL iterations), deconvolution rather causes noise

accumulation than convergence acceleration in correspondence with theory.

Figure 46: CC − norm comparison of the algorithm with simpli�ed modelling in the BP and the

proposed algorithm with subkernel approach in the deconvolution with respect to the number of

ML-EM iterations. The faster initial convergence implied by the proposed method is clearly visible.

However, its advantage reduces as the resolution of the reconstruction reaches the precision of the

PSF �t

To overcome this limitation of PSF �tting several forms have been tested. In subsection 3.4 the

PSF is assumed to be the sum of three Gaussian and therefore its Fourier-transform is real valued.

However, this is true only approximately and there is small but non-zero phase component of the re-

sult. Accounting for this phase component in the deconvolution can stabilize the process to a certain
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Figure 47: L2 − norm comparison of the algorithm with simpli�ed modelling in the BP and the

proposed algorithm with subkernel approach in the deconvolution with respect to the number of ML-

EM iterations. Simpli�ed modelling iterates away from the solution due to activity accumulation in

the corners of the voxel space

extent provided that the phase map remains smooth enough after taking the N th root of the PSF in

the Fourier domain. This modi�cation has indeed proven to be useful with respect to stability. This

di�erence was much more signi�cant when measured data was used as the input of the reconstruction.

In this case the MC modelling is not same process as the measurement generation only an approx-

imation. Therefore, any imperfection in the MC modelling is ampli�ed and the deconvolution task

also becomes more challenging as the PSF is based on simulation and the question of noise stability

is more emphasized in this case. Results are presented in the next subsection.

5.6 Measured Derenzo phantom

Performance of the deconvolved ML-EM algorithm was evaluated against measured data as well.

The reconstruction uses a measurement of a Derenzo phantom with identical geometry and reconstruc-

tion parameters to that used is the simulated Derenzo subsection, the total number of LoR counts is
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Figure 48: Derenzo phantom reconstruction,

summed transverse view after 10 iteration with

simpli�ed modelling in the BP. Brightness is

tuned so that there is anything visible beside ac-

tivity in the corners

Figure 49: Derenzo phantom reconstruction,

summed transverse view after 10 iteration with

deconvolution in the BP

1.2423×109. Unlike in the previous tests, in this case the isotope is 18F . Consequently, positron range

e�ects are less conspicuous but the other blurring factors are still strongly present, so the proposed

deconvolution �ltering can still bring something to the role. Due to lack of phantom reference the

results are qualitative only a line pro�le through the rods gives some qualitative information with

respect to resolution. Results after 10 ML-EM iteration (activity in the corners accumulates much

faster than in case of simulation) can be seen in �gures 48,49.

After qualitative comparison it can be concluded that the proposed method might be a useful image

quality improving modi�cation for standard ML-EM reconstruction scheme and also full physical

modelling is worth the e�ort implementing on real scanners. However, further �ne tuning is required.

6 Remaining problems

Throughout this thesis it was highlighted several times that the biggest hindrance for the proposed

algorithm is the imperfection of the PSF �t. Many e�orts were made to improve the performance

of the �tting process or replace it with extra long simulations. However, the precision required by
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Figure 50: Fourier-transform of the 10th root of the

transverse line pro�le of kernel g. the simulation took

approximately 50 hours, but the noise is still signi�-

cantly present.

Figure 51: Resulted salt and pepper

- like noise accumulation in the recon-

struction. The subsequent ML-EM iter-

ation step gave only a pattern similar to

a Dirac-delta and the reconstruction is

broken

the subkernel approach is still not met even in the case of a 2 day long PSF simulation for each

material. Representative result can be seen in �gure 50. The subkernel is still noisy and therefore

cannot be used directly for deconvolution due to noise ampli�cation which leads to the deterioration

of the reconstruction algorithm very quickly, see �gure 51.

Improving the performance of the �t procedure is a remaining task for future development and

is hoped to increase dramatically the e�ciency of the proposed deconvolution approach of the SVD-

�lter. Reformulation of the model function for the PSF (instead of the sum of three Gaussians plus

o�set) can be a possible direction. Also, precise enough implementation of the direct 3D �t would

also improve reconstruction quality as the coe�cient equality constraint for individual 3D Gaussians

with respect to direction (see subsection ...) was very hard to met and only approximately succeeded

in some cases.

Every reconstruction which used the presented deconvolution SVD-�ltering lacked any other type

of �ltering method due to trustworthy performance evaluation not being in�uenced by other e�ects

caused by additional manipulation. Further research could analyse the behaviour of the proposed

deconvolution approach when incorporating other �ltering to the algorithm. As it is well known that

deconvolution ampli�es noise, performance improvement is expected with well tailored supplementary
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modi�cations.

7 Conclusion

In this work a possible convergence accelerating method for ML-EM PET image reconstruction was

presented as a continuation of the SVD based convergence analysis and the corresponding �ltering

method from my bachelor's thesis. Despite the promising results of the proposed SVD �lter in the

1D model the practical implementation for a real scanner seemed infeasible due to computational and

storage related di�culties.

This thesis presents a possible remedy for these problems. A convolution model was formed to

approximate as faithfully as possible the e�ect of the SVD �ltering without introducing any computa-

tional burden and the only requirement is the storage of some voxel space sized array. The proposed

method uses the PSF of the imaging system for the deconvolution of the nominator and denominator

of the back projecting step of ML-EM PET reconstruction. The calculation of the convolution kernel

g from the PSF incorporating material dependence is a novel contribution, to the best knowledge of

the author, and makes the approximation of the SVD-�lter possible which was also �rstly used in [19].

The modi�cation hardly lengthened the reconstruction time but gave signi�cantly better results in

term of image quality and overall convergence speed and also abolished the inhomogeneity artefact of

back projection using full physical modelling which artefact had been present without deconvolution.

The algorithm uses the PSF of the system which is known to be position dependent. The quality of

the homogeneous approximation when every voxel is deconvolved with the central PSF was tested and

the approximation has proven to be su�cient. The most signi�cant distortion of the PSF is introduced

by the material map and material borders. A possible remedy for this problem was proposed which

divides the convolution kernel into subkernels. The algorithm was tested on both simulated and

measured Derenzo phantom with several con�gurations. The reconstruction results outperformed the

results of the simpli�ed back projection using algorithm and the method is still time-saving (even in

MATLAB environment) thanks to FFT and GPU implementation.

To summarize, the proposed method of this thesis successfully reproduced the advantageous e�ects

of the SVD �lter (accelerated convergence, preserved �x point and noise stability) and hence opened

the way for the full physical modelling in the back projection towards clinical and pre-clinical use

resulting in a better reconstruction than the best setting so far.
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