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1 Absztrakt

Az MRI képrekonstrukció matematikájának alapvető eleme a Fourier transz-

formáció. A parciális Fourier transzformációban időigény csökkentése érdekében

a k-térbeli adatsornak csak egy részét alkalmazzuk a rekonstrukcióban. Témám

során ezt a homodyne módszerrel kiviteleztem, miszerint a valós fantom k-

térbeli adatainak a hermitikus konjugált szimmetriáját alkalmazza. Ennek

seǵıtségével bepótolja a hiányzó adatokat, majd korrekciót végez arra nézve,

hogy a gyakorlatban komplex fantomokkal dolgozunk. Ennek a matem-

atikai kivitelezése egy felüláteresztő szűrő, majd egy aluláteresztő szűrő al-

kalmazásával megy végbe.

A homodyne módszert alkalmazó rekonstrukciós kódot ı́rtam MATLAB

környezetben, majd ezt a kódot optimalizáltam eleinte egy tekercses esetre

végeztem el, megtaláltam a legalkalmasabb paramétereket, majd kibőv́ıtettem

egy több tekercses esetre alkalmas kódra, amely egy moduláris függvénnyel

végezte a rekonstrukciót, vagy az általam ı́rt homodyne módszerrel vagy

egy már meǵırt POCS módszerrel működő kóddal. Munkám folyamán a

homodyne, POCS és zero filling módszereket hasonĺıtottam össze, illetve a

különböző tekercs rekombinációs folyamatokat.

Azt találtam, hogy a homodyne módszer kép amplitúdójának minősége

nem tér el kifejezetten a POCS módszerétől nagyobb partial Fourier fak-

tor mellett, viszont jóval gyorsabb, mivel nem iterat́ıv módszer, a rekom-

binációs folyamatoknál viszont jobb, ha a rekonstrukciót a rekombináció előtt

végezzük.
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2 Abstract

A fundamental element of MRI image reconstruction is the Fourier transform.[6]

The partial Fourier transform, in which only part of the k-space data is used

in the reconstruction, is used to reduce the amount of data that needs to be

acquired in a measurement. As part of my own work, I realized this technique

using the homodyne method, which applies hermitic conjugate symmetry of

a real object’s k-space data in order to fill in the missing data, then applies

a correction to accommodate the seemingly complex real world phantoms.

This mathematical implementation is carried out using a high pass filter

followed by a low pass filter.

I wrote the reconstruction code using the homodyne method in a MAT-

LAB environment[7], optimized this code for a single coil case first, found

the most suitable parameters, and then extended it to a multiple coil code

that had a modular reconstruction function using either my own homodyne

method or previously written code with the POCS method. During my work,

homodyne, POCS, and zero filling methods were compared, as well as differ-

ent coil recombination processes.

I found that the quality of the image amplitude of the homodyne method

does not differ significantly from that of the POCS method for higher partial

Fourier factors, while working much faster, since it is not an iterative method.

However recombination processes show better quality if the reconstruction is

performed before recombination.
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3 Theoretical background

Magnetic Resonance Imaging uses the spin property of atomic nuclei, often

utilizing the abundance of hydrogen in either water and fat, common compo-

nents in soft tissue. In an external field, these proton spins start a precession

motion: in addition to spinning on its axis, the axis itself will also rotate

around the external field at the Larmor frequency:

ω0 = γB0

where B0 is the magnitude of the magnetic field and γ is the gyromagnetic

factor. The gyromagnetic factor is isotope specific, however it generally is

given in units of MHz/T.

Figure 1: Precession in an external field

Using a radiofrequency pulse, we rotate the spins away from the external
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field in order to rotate the spins into the transverse plane.

Figure 2: Effect of a 90 degree radiofrequency pulse on a proton

This precession induces a measurable voltage due to the current produced

by changing magnetization. Following demodulation and assuming an ideal

case (without relaxation and with perfect demodulation) the signal will be

of the form:

S ∼
∫
d3rM⊥(r)e−iφ(r,t)

Where S is the signal, M⊥(r) is the transversal magnetization and φ(r, t)

is given by the time integral of the Larmor frequency, and is thus determined

by the spatial distribution of the magnetic field. For simple Nuclear Magnetic

Resonance (NMR) spectroscopy, a homogeneous B0 field is common, giving

us a constant phase that we can then set to zero by definition.
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3.1 MRI image reconstruction

In order to construct an image, the signal must be connected back to the

spatial point that it came from. This is made possible by giving the exter-

nal field a spatial dependance. This causes the Larmor frequency to varies

throughout the body, making it possible to connect the frequency of the

signal to its origin within the body.

This spatial variance is given by gradient coils. The gradient coils are

operated as a G(t) function of time, giving a field of form B(r, t) = B0 +

G(t)rez. The spatially variant second term will also appear in the Larmor

frequency and thus the signal as well, giving us frequency encoded informa-

tion about the source of the signal.

Figure 3: Effect of a gradient field within the body

In order to describe this effect mathematically, it is necessary to calculate

the phase introduced earlier. In the case describe above, this phase will be

given by the spatially variant term, that is:
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φ(r, t) = rγ

t∫
0

G(t′)dt′

A useful variable to introduce is k(t):

k =
γ

2π

t∫
0

G(t′)dt′

Making this substitution, our earlier formula will take the form:

S ∼
∫
d3rM⊥(r)e−i2πkr

Because of the useful nature of the k(t) variable, frequency data is known

as k-space data, which is made up of the spectral components of spatial data

(the image itself), which is proportional to M⊥(r). As is clear in the formula

above, the signal is a simple function of the magnetization. In fact, the

expression above is Fourier transform. Simply put, the following is true of

the measured signal:

S(k) = F [M⊥(r)]

In order to get back our spatial data and create an image, we have to

connect each spectral component back to its spatial origin, which is similarly

done by using the Fourier transform, or, more precisely, an inverse Fourier

transform. Therefore, the proton density, proportional to the magnetization,

is given by taking the inverse Fourier transform of k-space data. [3]
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3.2 Fourier transform and partial reconstruction

The Fourier transform is a well known mathematical operation. In my work

only one main property of the Fourier transform was truly important: its

Hermitian symmetry. If the spatial object is real, one half of the k-space will

be the conjugate of the other.

In MRI imaging could theoretically be a very useful property. After all,

MRI scans measure a real body and collect k-space data directly, thus a

possibility to measure only half the data and calculate the rest numerically,

scan time could be reduced by almost half. However, in reality, the original

object does not appear as a real object.

Figure 4: Image reconstructed with half of the k-space data

The original object will pick up phase shifts due to patient motion, res-

onance frequency shifts, hardware, electronics, eddy currents or other field

inhomogeneity. Thus, these phase shifts create a reconstructed object that is
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complex instead of purely real, causing errors in any reconstruction assuming

a real object.

However, collecting less data to save time is still a goal within MRI field.

Therefore, while sampling exclusively one half of the k-space is impractical,

using one half to reconstruct the missing data, as well as a small section of

the other half to make a reasonable estimation of the phase is still an option.

This method is called Partial Fourier Reconstruction.

Figure 5: k-space data in partial Fourier reconstruction. Data is sampled
inside the blue area.

Typically, we characterize the partial Fourier transformation with a par-

tial Fourier factor, the fraction of the k-space that is sampled.
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3.2.1 Zero filling

There are a few ways to do this. One is to simply remove the data from a

section of the k-space and replace it with zeros, then perform the Fourier

transform. This is called zero filling. Zero filling gives a fairly good image in

the low-spatial-frequency range, but it requires large fractions of the k-space,

around 0.75, to be reasonably phase accurate with good image quality.

Figure 6: Zero filling with partial Fourier factor of 0.625 and 0.75 respectively

Even at 0.75, the zero filling method causes Gibbs ringing near sharp

edges.
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Figure 7: Gibbs ringing present in zero filling with partial Fourier factor of
0.75

The zero filling method remains one of the more practical methods for

phase sensitive techniques, such as shimming. It requires very little calcu-

lation and thus computation time and at higher partial Fourier factors its

image quality is comparable to those of more involved techniques. However,

for high quality images with low partial Fourier factor and in events where

the phase information is not necessary for following techniques, one of the

simpler, more efficient techniques is that of homodyne processing.
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3.2.2 Homodyne

A slightly more involved technique and the predominate technique in my

own work, homodyne processing involves constructing a phase map from the

symmetrically sampled k-space and adding it to the image reconstructed with

the assumption of an ideal, real object.

In the direction of the partial Fourier transform, −kmax to −k0 is not

sampled, −k0 to k0 is symmetrically sampled, and k0 to kmax is sampled only

on one side of the k-space.

In the ideal case, the image I(x) is real without unwanted phase shifts,

and thus the Hermitian symmetry, S(k) = S∗(−k), holds true for the k-space

data, S(k):

I(x) =

kmax∫
−kmax

S(k)ei2πkxdk (1)

In this case, using the Hermitian symmetry, the Fourier Transform (1) can

manipulated in the following way. First, the the integral above can be sep-

arated into two parts, one on the interval [−kmax,−k0], where we make the

replacement allowed by Hermitian symmetry, and another on the interval

[−k0, kmax], where we do not.

I(x) =

−k0∫
−kmax

S∗(−k)ei2πkxdk +

kmax∫
−k0

S(k)ei2πkxdk (2)

For the first integral, the variable k′ = −k can be introduced. It is easy to

see this will give a factor of e−i2πkx in the integral, which is the conjugate of

the original factor. Thus, since the integral also contains S∗(k′), the resulting
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integral can be interpreted as the conjugate of a regular Fourier transform of

S(k′) (for the given interval).

I(x) =

 kmax∫
k0

S(k′)ei2πk
′xdk′

∗ +

kmax∫
−k0

S(k)ei2πkxdk (3)

Since there is no instance of k remaining in the first integral, there is

no reason why k′ cannot be denoted by k for consistency. The second inte-

gral can be further separated into two more integrals, one along the interval

[−k0, k0], the other along the interval [k0, kmax].

I(x) =

 kmax∫
k0

S(k)ei2πkxdk

∗ +

k0∫
−k0

S(k)ei2πkxdk +

kmax∫
k0

S(k)ei2πkxdk (4)

The first and third integrals can be combined, as one is merely the conjugate

of the other.

I(x) =

k0∫
−k0

S(k)ei2πkxdk + 2Re

 kmax∫
k0

S(k)ei2πkxdk

 (5)

Given that the initial assumption is that the image is real, and the second

element is clearly real, the first integral also be real. Therefore, taking real

part of both integrals gives the same effect.

I(x) = Re

 k0∫
−k0

S(k)ei2πkxdk + 2

kmax∫
k0

S(k)ei2πkxdk

 (6)
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This combination of integrals can be replaced by a single integral, where

the integral includes a step function.

IH(x) =

kmax∫
−kmax

H(k)S(k)ei2πkxdk (7)

This step function, H(k), is essentially a high pass filter.

H(k) =


0 k < −k0

1 −k0 ≤ k < k0

2 k ≥ k0

Figure 8: High pass filter, H(k)

By using this filter, data collected on the interval [−k0, kmax] can be

reconstructed so that it is identical to the result given by a reconstruction of
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a full dataset.

I(x) = Re[IH(x)] (8)

However, this is only true for a real object.

In order to take into account possible phase shifting, phase correction is

used. The phase correction is calculated from symmetrically sampled k-space

data by making a low-frequency image, using a low-pass filter, L(k).

L(k) =

1 |k| ≤ k0

0 |k| > k0

Figure 9: Low pass filter, L(k)

IL(x) =

k0∫
−k0

S(k)ei2πkxdk =

kmax∫
−kmax

L(k)S(k)ei2πkxdk (9)
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The phase of this image is a good approximation of the phase of for the

original image, reconstructed from a full data set, and thus, using the phase

from this image with the earlier ideal image, the final image is calculated as

follows:

I(x) = Re
[
IH(x)e−iφL(x)

]
(10)

where φL(x) is the phase of IL(x). Calculating the phase directly can cause

errors due to numerical applications of the arctangent function, therefore it is

better to get the phase by conjugating the low-frequency image and dividing

it by its magnitude to get the phase:

IH(x)e−iφL(x) = IH(x)
IL ∗ (x)

|IL(x)|
(11)

The final image will be the real part of this, meaning the original phase is

still lost, therefore for phase sensitive techniques the zero-filling more prac-

tical, but homodyne processing reproduces the image with sufficient quality

using smaller partial Fourier factors. [4]

It is important to note that in reality, the simple step functions seen

above are augmented with smoother transitions.This is because hard edges

and corners, such as the ones seen in step functions, cause ringing around

the edges. [8] Using cosines, it is possible to make these edges ”rounder” and

16



thus avoid ringing, giving the following forms:

H(k) =



0 k ≤ −kmin − w/2

cos

(
π
|k| − kmin + w

2

2w

)2

−kmin − w
2
< k < −kmin + w

2

1 −kmin + w
2
≤ k ≤ kmin − w

2

cos

(
π
|k| − kmin − w

2

2w

)2

+ 1 kmin − w
2
< k < kmin + w

2

2 kmin + w
2
≤ k

L(k) =


1 k ≤ kmin − w

2

cos

(
π
|k| − kmin + w

2

2w

)2

kmin − w
2
< k < kmin + w

2

0 kmin + w
2
≤ k

Figure 10: Final forms of filter functions with smoothing
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4 Realization

During my work, I wrote a few versions of the homodyne program. The first

version was a single coil program that took the following variables as input:

• The k-space data

• k0, kmax

• The w parameter seen in the earlier ”smoother” step functions, referred

to as ”smoothing factor” in further sections

The goal of this first program was to optimize the homodyne program.

The most important parameter in this step was the aforementioned smooth-

ing factor.

4.1 Smoothing factor

In order to find the value that would give optimal image quality, I wrote a

program that varied the smoothing factor and produced an image for each

value of this factor. I then took the image amplitude and compared it to the

amplitude of the original image by taking the root mean square error. I also

did a comparison of the phases of both images, but since this was not affected

by the smoothing factor, I decided to focus instead on the amplitude. By

plotting the root mean square error as a function of the smoothing factor,

found that the graphs showed the following curve.
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Figure 11: RMSE of images produced with varying smoothing factor, with
reference to original image, a Shepp-Logan phantom of size 128 x 128 pixels

As seen on the image above, there is a pronounced dip in error values

at approximately 33 pixels. I repeated this process with several images of

varying size, finding that the shape of the curve was always the same as seen

above, with irregular values in the first third of image size, followed by a dip

and then steady increasing error. This dip was consistently between 25-35

percent of the image size.

This is also reflected by the images themselves:
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Figure 12: Images produced with smoothing factor at 0.1, 0.2, 0.5 times the
image size

Images with small smoothing factors show ringing, images with larger

smoothing factors were blurred and low-contrast.

Thus, in the second version of the single coil homodyne reconstructive

algorithm, I set this value to be a factor of 0.3 times the image size, though

I kept this parameter at the top of the code where it can be easily changed

in order to further optimize image quality. In order to facilitate further

comparisons with other methods, I also changed the inputs that determined

the sampling interval to a partial Fourier factor, where a partial Fourier factor

of 0 meant no sampling, 0.5 corresponded to half the k-space being sampled,

and 1 to the event of full sampling. [1]
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4.2 Comparison with POCS, automation

Using this second version, I started the analysis of this method by comparing

it to the projection onto convex sets (POCS) method. [5]

The POCS method treats partial Fourier reconstruction as a constrained

optimization problem. Each constraint (in this case phase and data consis-

tency, respectively) is defined as a convex set, and are then taken into account

with an iterative projection algoritm. Points in the intersection of two convex

sets can be found by alternating projections onto each set until the method

converges. This method, while slower, provides a better reconstruction of

the phase and better image quality, and thus made a good reference for

comparison.

I used a POCS algorithm written by Martin Blaimer in order to do this

comparison. [2]

The comparison, initially done in a single coil scenario, took into account

four aspects of the images produced:

• Visual comparison of results

• Differences between amplitudes of the images, between methods and

with a reference image, reconstructed from a full k-space, as well as

RMSE values between them.

• Visual comparison of phases by taking the conjugate of one image and

multiplying it with the other

• Noise propagation, consisting of twenty reconstructions with random

noise added to each k-space, then taking the standard deviation of
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values for each pixel. Later we took the averages of these values as

well.

This resulted in several hundred images when run with a sufficient range

of partial Fourier factors. Therefore, I automated the process of creating and

saving the images and raw data, put the partial Fourier factor and averages

on the image for simple comparison and picked a color scheme that gave the

most information for each of these, which provided the framework for future

comparisons in a multi-coil scenario.
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4.3 Multi-coil reconstruction

In order to be used in parallel imaging, the reconstruction had to be usable

for a multi-coil scenario. In a multi-coil scenario, each coil has its own profile,

and images are created with the weighted linear combination of the images

given by each individual coil. For the purposes of this work, the coil profiles

were simulated by a MATLAB program. The work was done with 8 virtual

coils of radius 2.56 cm.

There are two ways to do a multi-coil reconstruction:

Figure 13: Recombination methods

Reconstruction first The k-space from each coil can be individually recon-

structed using a homodyne or POCS reconstruction. The reconstructed

images can then be combined using the coil profiles. For the homodyne

reconstruction, as the homodyne method gives a real output, this is
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the magnitude of the coil profiles, for the POCS method, this is the

conjugate of the coil profiles.

Reconstruction second The k-space data from each coil can also be re-

constructed by doing a zero filling reconstruction of each image. These

spatial images are then recombined, weighted with the conjugate of

the coil profiles. By doing another Fourier transform, a single k-space

dataset is created.

Figure 14: The effect of multiplication with the coil profiles.

It is important to note that this k-space data, while still only a partial

data set, also is the product of convolution with the Fourier transform

of the coil profiles (shown in red on the figure above) in the k-space,

and thus has an extra ”band” added below −k0. Therefore, instead
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of the original partial Fourier factor (corresponding to the area shown

in blue), we must add half the size of the coil profiles to this partial

Fourier factor (the area shown in green) and use this in the homodyne

or POCS reconstruction, which gives the final image.
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5 Results

Due to the nature of the homodyne process, only the real part of the image

is usable. This means that the phase comparison within my work was mostly

a check to see if the code was functioning as expected. This condition was

met, as the homodyne had a simple, linear phase shift (the phase given to

the phantom) while the POCS and zero filling functions had a zero phase,

with the exception of ”empty” areas were the noise dominated.

Figure 15: Phase comparison to full data set reconstruction for homodyne,
POCS and zero filling methods respectively.

The rest of the results can be broken up into two categories: comparisons

of the homodyne, POCS and zero filling methods done with the reconstruc-

tion before coil recombination, or done after recombination.
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5.1 Comparison of POCS and homodyne with recon-

struction first

The reconstruction was completed for partial Fourier factors between 9/16

and 15/16 with steps of 1/16. The RMSE values between the amplitudes of

partial Fourier reconstructed images and the images reconstructed with a full

data set were recorded and divided by the norm of the original image, as well

as the averages of the noise propagation over the entire image, scaled to the

noise added to the images (a random, complex noise created from a Gaussian

distribution and of magnitude 10−3 over an image of size 256 by 256 pixels).

These were then plotted as a function of the partial Fourier factor.

Figure 16: Relative RMSE of amplitudes for a brain slice for POCS, homo-
dyne and zero-filling methods, reconstruction first.
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Figure 17: Relative average noise propagation for a brain slice for POCS,
homodyne and zero-filling methods, reconstruction first.

For visual comparison, only partial Fourier factors between 5/8 and 7/8

are shown here, as smaller partial Fourier factors (for example, 9/16, shown

below) had such large amounts of ringing they were functionally unusable,

and higher partial Fourier factors gave no added information.
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Figure 18: Images produced with small partial Fourier factor.

Below are the results of reconstruction in the region of interest. Ampli-

tude differences were multiplied by a factor of 5 for increased visibility.
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Figure 19: Shepp Logan phantom reconstructed with partial Fourier factors
5/8, 6/8 and 7/8, with a full data set as reference.
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Figure 20: Amplitude differences between Shepp Logan phantom recon-
structed with partial Fourier factors 5/8, 6/8 and 7/8 and reference image
made with full data set.
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Figure 21: Noise propagation for Shepp Logan phantom reconstructed with
partial Fourier factors 5/8, 6/8 and 7/8.
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Figure 22: Brain slice reconstructed with partial Fourier factors 5/8, 6/8 and
7/8, with a full data set as reference.
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Figure 23: Amplitude differences between brain slice reconstructed with par-
tial Fourier factors 5/8, 6/8 and 7/8 and reference image made with full data
set.
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Figure 24: Noise propagation for Shepp Logan phantom reconstructed with
partial Fourier factors 5/8, 6/8 and 7/8.
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5.2 Comparison of POCS and homodyne with recon-

struction second

The methodology in this section was identical to the one before, this time

with the reconstruction method in question (homodyne, POCS, zero filling)

being performed on a single k-space composed of all the coil information

recombined.

Figure 25: Relative RMSE of amplitudes for a brain slice for POCS, homo-
dyne and zero-filling methods, reconstruction second.
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Figure 26: Relative average noise propagation for a brain slice for POCS,
homodyne and zero-filling methods, reconstruction second.
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Figure 27: Shepp Logan phantom reconstructed with partial Fourier factors
5/8, 6/8 and 7/8, with a full data set as reference.
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Figure 28: Amplitude differences between Shepp Logan phantom recon-
structed with partial Fourier factors 5/8, 6/8 and 7/8 and reference image
made with full data set.
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Figure 29: Noise propagation for Shepp Logan phantom reconstructed with
partial Fourier factors 5/8, 6/8 and 7/8.
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Figure 30: Brain slice reconstructed with partial Fourier factors 5/8, 6/8 and
7/8, with a full data set as reference.
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Figure 31: Amplitude differences between brain slice reconstructed with par-
tial Fourier factors 5/8, 6/8 and 7/8 and reference image made with full data
set.
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Figure 32: Noise propagation for Shepp Logan phantom reconstructed with
partial Fourier factors 5/8, 6/8 and 7/8.
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6 Conclusion

The homodyne method has many of the same issues as zero filling, with

similar Gibbs ringing for lower partial Fourier factors. Its primary advantage

over the POCS method is that it is significantly faster. This is unsurprising,

as the POCS method is iterative and thus by nature a slower method.

We can see that at partial Fourier factors around 5/8, ringing is present in

the homodyne methods, as can be seen on Figure 23, for example. However,

the ringing is much less pronounced than that of the zero filling method.

For a partial Fourier factor around 6/8 or more, this ringing is replaced by

streaks similar to those seen in the POCS method, and while the homodyne

method does not produce artefact free images at any partial Fourier factor, it

produces much cleaner images and far less Gibbs ringing around edges than

the zero filling method, and produces cleaner edges than the POCS method

as well.

The RMSE values show similar behaviour in the POCS and homodyne

methods. The RMSE values of the homodyne method at 9/16 are not in-

dicative of the phantom produced, however later behaviour shows that the

average error evens out at a partial Fourier factor of roughly 0.70, showing

little different between the error in the homodyne and POCS methods.

The average noise propagation for the image, however, shows a greater

difference between methods, with significantly larger values for the POCS

method, as much as twice that of the homodyne.

Finally, the comparison between recombination orders shows that the

event where reconstruction with the primary method is performed for each
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coil separately, before recombination, gives a slightly better RMSE value.

However, this difference, while consistent, is not significant and does not

visibly reduce the amount of artefacts produced.
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