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folyamatok megértésétől a gyógyszerkísérleteken át az orvosi alapkutatásokig.

Az utóbbi időben egyre nagyobb figyelmet kap az ún. nyugalmi fMRI, amely a nyugalomban lévő agy funkcionális 
hálózati kapcsolatainak mérésére ad objektív lehetőséget. Az MR képalkotás sejátosságai miatt ez a vizsgálat 
különösen érzékeny az alany elmozdulásaira, valamint különféle fiziológiai műtermékekre. Ezért az adatok 
kiértékelése előtt átfogó előfeldolgozási lépések alkalmazása szükséges.
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- megvizsgálni a nyugalmi fMR adatokban található zajkomponensek jellemzőit, valamint azok lehetséges hatását a 
vizsgálat kimenetére

- végül pedig az adatfeldolgozási protokoll optimalizálása a zaj minél nagyobb fokú kiszűrése érdekében
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List of abbreviations 

 

 MRI  Magnetic Resonance Imaging 

 fMRI  functional Magnetic Resonance Imaging 

 rs-fMRI resting-state functional Magnetic Resonance Imaging 

 FID  Free Induction Decay 

 SE  Spin Echo 

 EPI  Echo Planar Imaging 

 BOLD  Blood-oxygen-level dependent 

 TR  Repetition Time 

 TE  Echo Time 

 FOV  Field of view 

 oxy-Hb oxyhemoglobin 

 de-Hb  deoxyhemoglobin 

 CBF  Cerebral Blood Flow 

 CBV  Cerebral Blood Volume 

 HRF  Hemodynamic Response Function 

 FWHM Full width at half maximum 

 fc-MRI functional connectivity magnetic resonance imaging 

 DMN  Default Mode Network 

 ROI  Region of interest 

 SCA  Seed-based Correlation Analysis 

 ICA  Independent Component Analysis 

 STC  Slice-timing Correction 
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 GM  Grey Matter 

 WM  White Matter 

 CSF  Cerebrospinal Fluid 

 GLM  General Linear Model 

 aCompCor anatomical Component based noise Correction 

 PCA  Principal Component Analysis 

 tSNR  temporal signal-to-noise ratio 

 LLP  Left Lateral Parietal lobe 

 RLP  Right Lateral Parietal lobe 

 PCC  Posterior Cingulate Cortex 

 MPFC  Medial Prefrontal Cortex 

 ATT  Dorsal Attention System 
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1. Introduction 

Resting-state functional magnetic resonance imaging (resting-state fMRI) is a recent 

neuroimaging technique that is widely used to explore functional architecture of the brain. 

One of its main advantages is that it places a minimal cognitive burden on the participant and 

requires relatively little time in the scanner permitting data collection from populations that 

are typically difficult to study. The clinical potential of resting-state fMRI is significant, the 

possible applications are still being explored. While the method yields promising preliminary 

results in characterization of functional connections and in assessment of individual 

differences, there is a set of methodological questions that remains to be resolved. In the first 

part of the thesis, I briefly introduce the physical and physiological background of resting-

state fMRI as well as the typical processing and analysis steps performed on the data. In the 

second part, the thesis addresses some of the unresolved issues and provides 

recommendations to optimize procedures for seed-based correlation analysis. 

Resting-state fMRI signals are particularly susceptible to subject motion and other 

physiological artifacts resulting in an inherently low data quality. The high level of noise can 

lead to biased estimates of functional connectivity, which requires multiple preprocessing 

steps to be performed on the raw data. Several studies have used linear regression methods for 

data processing [1][2], however, at present, there is no clear consensus regarding the best 

approach. This lack of consistency in terms of preprocessing methods makes it difficult to 

compare resting-state fMRI studies, as different approaches can yield significantly different 

results. During my thesis project, I first explored the basic characteristics of the signal to get a 

better understanding of the nature of human resting-state data sets. Then, in an attempt to find 

an optimal protocol, I systematically tested the effects of several linear regression based 

preprocessing strategies on the sensitivity and specificity of functional network detection with 

particular focus on the anatomical component based noise correction. 

I also investigated the effect of residual motion present after data preprocessing. Head 

motion is particularly challenging problem in resting-state fMRI studies, since it can 

significantly affect the output of the analysis even within the range of motion exhibited by 

typical, healthy young adults [3]. Furthermore, I tested the ability of a recently introduced 

frame censoring technique referred to as “scrubbing” [4] to eliminate residual motion effects. 

Finally, the optimized data preprocessing and analysis protocol was applied to a 

clinical problem, where individual connectivity differences in patients with removed 

retrosplenial tumors were assessed. 
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2. Principles of magnetic resonance imaging 

Magnetic resonance imaging (MRI) is an imaging technique used to investigate structure and 

function of the body. MRI has a wide range of applications in the medical diagnosis from 

neuroimaging through cardiovascular MRI to real-time MRI. The success of MRI lies in its 

numerous advantages compared to other imaging techniques. First, it does not involve 

exposure to radiation and no chemicals need to be injected into the body (if no contrast agent 

is applied). The health risks of an MR examination are therefore incomparably lower than that 

of most other radiological techniques. Second, MRI has an excellent soft tissue contrast, 

which is particularly useful for imaging soft tissues such as the brain or heart. Third, multiple 

contrast mechanisms can be exploited by MRI making it the most versatile imaging technique 

in medical diagnosis. Furthermore, the most important acquisition parameters (resolution, 

field of view, slice thickness, slice orientation etc.) are adjustable allowing the investigator a 

large degree of freedom in optimizing the settings to the particular application. 

 MRI is based on the quantum mechanical phenomenon of nuclear magnetic resonance, 

in which certain atomic nuclei absorb and subsequently emit electromagnetic radiation in the 

presence of an external magnetic field. Detection of the emitted radiation allows inferences 

about the properties of the investigated tissue. Section 2.1 introduces the magnetic moment of 

atomic nuclei, which gives rise to nuclear magnetic resonance. The Bloch equations that 

describe the dynamics of the magnetic moments under the effect of magnetic field are 

discussed in Section 2.2. These equations allow a purely classical description of the inherently 

quantum mechanical phenomenon. 

 MRI examinations involve simultaneous application of external magnetic field, 

radiofrequency (RF) pulses, magnetic gradient waveforms and data acquisition. Pulse 

sequences are used to manipulate magnetic moments in order to produce the desired signal. 

Section 2.3 describes two basic pulse sequences: free induction decay (FID) and spin echo 

(SE) sequences that are important to understand more advanced sequences. 

 Spatial encoding of the emitted RF signal is achieved by the application of magnetic 

gradients in multiple directions. The effect of these gradients on the measured signal and the 

process of generating spatial images are simpler to understand using the k-space concept, 

described in Section 2.4. In the last section, the pulse sequence of Echo Planar Imaging (EPI) 

is discussed, which plays a crucial role in neuroimaging with its use for virtually all functional 

MRI and diffusion imaging. 
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2.1  Nuclear magnetic resonance 

The constituents of the atomic nucleus – protons and neutrons – possess angular momentum 

(��) that is the sum of orbital and intrinsic angular momenta (also known as spin). Further, the 

angular momentum of the nucleus is simply the vector sum of the individual angular 

momenta. Protons and neutrons have the tendency of forming pairs with zero resultant 

angular momentum, therefore only the unpaired protons and neutrons have contributions to 

the total angular momentum of the nucleus. In MRI, only nuclei with unpaired protons and/or 

neutrons are detectable because of their ability to produce magnetic resonance. Such nuclei 

include 1H, 13C, 23Na, 31P. 

 Nucleons have another property coupled to the angular momentum: the magnetic 

moment (����). The relationship between the two vector quantities is: 

���� = ���      (1) 

where ���� and �� are the net magnetic moment and net angular momentum of the nucleus, 

respectively, and � is the proportionality constant called gyromagnetic ratio. Gyromagnetic 

ratio is specific to the nucleus, for the nucleus of hydrogen its value is 42.58 �
�� . 

Instead of investigating single nuclear magnetic moments, an intensive vector 

quantity, magnetization is defined as the sum of all magnetic moments in a given volume 

divided by the volume � itself: 

�����(���, �) = ∑ �����(���,�)��      (2) 

In the absence of external magnetic field, the individual magnetic moments are randomly 

oriented; the net magnetization of a sample is zero. However, in the presence of external 

magnetic field the magnetic moments (����) interact with the ����� external field, creating a 

potential energy � dependent on the relative orientation of the two vectors: 

� = −���������      (3) 

 The rules of spin algebra also apply to magnetic moments, their projection onto the 

direction of external field can therefore only take on discrete values. If the   axis is defined as 

the direction of �����, the   component of the magnetic moment is: !� = �"� = �ħ$%     (4) 
where $% is the magnetic quantum number of the nucleus and ħ is the reduced Planck 

constant. $% can take on 2" + 1 distinct values with " being the spin quantum number of the 

nucleus: 

$) = −", −" + 1, … , " − 1, "     (5) 
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Thus, the potential energy values the particular nucleus can take on are also discrete: � = −�ħ$%+�     (6) 

In the case of 1H nucleus the spin quantum number is ½, hence there are two energy states: �↑ 

for the spins pointing parallel to the magnetic field and �↓ for spins pointing antiparallel to 

that. 

�↑ = − ./ �ħ+�      (7) 

�↓ = + ./ �ħ+�      (8) 

Δ� = �↓ − �↑ = �ħ+� = 1ħ     (9) 

It follows from these equations that spins in alignment with ����� are in a lower energy state. 

The ratio between the occupation numbers of the two energy states is given by the Boltzmann 

equation: 

2↑2↓ = 34567     (10) 

where 8 and 9 are the Boltzmann constant and the absolute temperature, respectively. 

According to Equation (10) there is an excess number of spins in the lower energy state in 

equilibrium, resulting in a non-zero bulk magnetization in the   direction (:�). The net 

magnetization in the ; − < plane is still 0, since there are no restrictions in this direction as 

was the case in the   direction. However, the equilibrium state of net magnetization can be 

perturbed because spins can change between energy states by absorbing or emitting energy. If 

the energy quantum of absorption is equal to the energy difference between the two energy-

states given in Equation (9), the probability of absorption and induced emission increases by 

orders of magnitudes. The excitation of nuclear spins at a well-defined frequency is the 

nuclear magnetic resonance. As can be seen from Equation (9), the frequency of the selective 

excitation is magnetic field dependent: 

= = >/? = @AB/?      (11) 

Immediately after excitation the system begins to relax to the equilibrium state (����� =:CD��). The relaxation in the  -direction is called T1 relaxation (spin-lattice relaxation) and 

occurs by emitting energy quanta of the frequency as given in Equation (11). On the other 

hand, the relaxation in the ; − < plane (T2 relaxation, spin-spin relaxation) is a process of 

losing phase coherence and it doesn’t involve skipping energy levels. 
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2.2 Bloch equations 

Bloch equations are a set of phenomenological equations describing the temporal behavior of 

magnetization. Let the magnetization be �����(�) = (:E(�), :F(�), :�(�)) with :C equilibrium 

magnetization in the   direction.The equations read: 

G�B(�)G� = � H�����(�) ; ����(�)I� − �B(�)J�K�L    (12) 

G�M(�)G� = � H�����(�) ; ����(�)IE − �M(�)�N     (13) 

G�O(�)G� = � H�����(�) ; ����(�)IF − �O(�)�N     (14) 

The appearing 9. and 9/ parameters are characteristic times describing the T1 and T2 

relaxations. These parameters are tissue specific, therefore they present an important source of 

contrast. The two relaxation processes are independent from each other, but 9. is always 

higher than 9/. Without relaxation the equations simplify to: 

G�����(�)G� = � H�����(�) ; ����(P)I    (15) 

If only the external magnetic field is present (���� = +CD��), the equation describes a precession 

around the   axis with precession angular frequency of: 1C = �+C     (16) 

This equation is the Larmor equation and 1C is called the Larmor frequency and is equal to 

the frequency of energy quanta necessary to excite a spin. 

Handling Bloch equations is much easier in a rotating reference frame. The effect of 

rotating reference frame is equivalent as if the spins experienced an effective magnetic field 

of +QRR = +C − S/� along the   axis, where S is the angular frequency of the rotating frame 

rotating in the same direction as the precession of spins. In an appropriately selected rotating 

reference frame (ΩC = �+C) the Larmor precession can be formally eliminated from the 

equations. Now, if an additional ����. magnetic field (excitation field) is applied in the ; − < 

plane, the �����C = :CD�� equilibrium magnetization begins to precess around the excitation field 

according to Equation (15). ������ can thus be rotated from the   direction by an angle of V =�+.�. 

In most pulse sequences, ������ is attempted to be flipped completely into the ; − < 

plane by turning on the excitation field for a proper period of time.  In laboratory reference 

frame, the net magnetization vector (that has now transverse component) keeps rotating 
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around the external magnetic field during and after the excitation. This rotating magnetization 

induces voltage in the detector coils and is therefore detectable. 

 

2.3 Basic pulse sequences 

2.3.1 Free induction decay 

Free induction decay (FID) is the simplest pulse sequence possible: the equilibrium :C 

magnetization is deflected to the transverse plane (V = 90°), where the initial magnetization 

(:Z) precess with its characteristic 1C Larmor frequency. The directly measurable signal [ is 

proportional to the time derivative of the transverse magnetization. Without detailed 

derivation it can be formulated as: 

[(�) ∿ 1C3J�/�N∗ ^ :Z(���)3�(>K�_`(���,�))abc   (17) 

The above equation accounts for the local inhomogeneities in the spin ensemble, as well. 

According to Equation (17) a precessing magnetization vector generates a decaying harmonic 

signal in the detecting coil. The decay of the free induction signal is characterized by 9/∗ that 

is made up of two factors: 

.�N∗ = .�Nd + .�N     (18) 

9/e and 9/ refer to different relaxation processes. The relaxation characterized by 9/ is 

associated with the molecular-level random movement of the nuclei containing the magnetic 

moments; the dephasing caused by this process cannot be traced back. In contrast, the 

relaxation characterized by 9/e is caused by local inhomogeneities in the external magnetic 

field that force the spins at different locations to precess at different frequencies. The 

dephasing due to different precession rates manifests itself in signal loss that follows an 

approximately exponential pattern. The detected harmonic signal and the parameters 

characterizing the envelope of the signal can be seen in Figure 1. 

 

2.3.2 Spin echo 

With the application of spin echo (SE) sequence the effect of 9/e relaxation can be reversed. 

This is achieved by a 180° refocusing pulse that follows the 90° excitation pulse by a period 

of f. During this period the spins precessing at different frequencies build up different phases 

that are linearly proportional to f. The refocusing pulse negates the accumulated phases, 

which means that after another period of f the spins eliminate their earlier accumulated 

phases. However, the dephasing caused by 9/ cannot be refocused, therefore the measured 

signal in an SE sequence depends on only 9/ (when measured at 2f). The defining parameter 
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of this sequence is the echo time (TE) that represents the time between the excitation and the 

peak of the echo signal. The evolution of the detected signal in a spin echo experiment is 

displayed in Figure 2. 

 

 
Figure 1. 9/ and 9/∗ relaxation processes. The amplitude of the net transverse magnetization (and therefore the 
detected signal) decays as the proton magnetic moments move out of phase with one another (shown by the 
small black arrows) [5]. 
 

 
Figure 2. Scheme of generating spin echo. The 180° refocusing pulse applied at f creates a signal maximum 
(spin echo) at 2f [6]. 

 

2.4 Sampling of k-space 

Equation (17) can be reformulated by assuming that the signal is demodulated to remove 

Larmor precession and there is no relaxation. Further, proportionality factors not specified in 

Equation (17) can be condensed with the initial transverse magnetization :Z(���) into a single 
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component called effective spin density and denoted by gQRR. gQRR is also the function of ��� 

and comprises factors that determine the local intensity of the signal including sensitivity of 

detecting coils, local magnetization, Larmor frequency etc. If relaxation is present, it can also 

be incorporated into gQRR. The time-domain signal created by transverse magnetization can 

thus be written as: 

[(�) = ^ gQRR(���) ∙ 3J�i(���,�)abc   (19) 

The accumulated phase (in radians) within time � and at location ��� is: 

Φ(���, �) = � ^ 1(���, �e)a�e = � ^ ��� ∙ k����C�C (�e)a�′  (20) 

where k��� = m1 is the gradient vector of the precessing frequency, and is therefore directly 

proportional to the gradient of the   component of the magnetic field. Let us define n��� as: 

n���(�) = @/? ^ k����C (�e)a�′    (21) 

With the definition of n���, Equation (19) becomes: 

[(�) = ^ gQRR(���) ∙ 3J/?�n���(�)∙���abc   (22) 

From this form of Equation (22), it is evident that the measured signal [(�) is the Fourier 

transform of the effective spin density gQRR(���). Since n���(�) is Fourier conjugate variable to ���, 

it is practical to consider the signal as a function of n���. The space that n���(�) resides in is known 

as k-space, and it has units of inverse distance, typically inverse centimeters. With evolving 

time [on���(�)p traces a trajectory in the k-space. From Equation (21) it follows that the speed 

of k-space traversal is determined by k��� and �, and the trajectory in k-space is parallel to k���. 

 The goal of all pulse sequences is to sample the k-space by introducing magnetic 

gradients in multiple directions. After sampling with an appropriate field of view and density 

is achieved, the measured signal is inverse Fourier transformed to obtain the effective spin 

density map in the native ��� space. Note that resulting from the Fourier conjugate properties, 

the resolution and field of view in the native space are numerically the inverse of the field of 

view and resolution in the k-space, respectively. To create a 3D image, k-space traverse in 3 

mutually orthogonal directions is necessary. However, most pulse sequences reduce the 

problem of 3D imaging to 2D by building up the volume from sequentially sampled slices. 

The slices are excited selectively by the so-called slice selection gradient (q�) applied in the   

direction. Subsequent sampling of the selected slice is achieved by two additional imaging 

gradients, the phase encoding and the frequency encoding gradient that are applied in the ; 
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and < directions. The time between successive excitations applied to the same slice is the 

repetition time (TR). 

 

2.5 Echo planar imaging 

One of the main advantages of the k-space concept is that sampling strategies of different 

sequences can be illustrated in a very descriptive manner. As an example I briefly introduce 

the idea behind echo planar imaging (EPI) sequence outlining which characteristics of the 

acquisition strategy make it one of the fastest pulse sequences. 

 The pulse sequence diagram of EPI can be seen in Figure 3A., where the lines of Gz, 

Gy Gx refer to the application of imaging gradients in the ;, <,   directions, respectively, 

while the lowest line represents the evolution of the signal measured in the acquisition 

periods. The k-space traversing pattern dictated by the order, direction and magnitude of 

gradients is illustrated in Fig.3B. Note that EPI samples the whole 2D k-space after a single 

excitation by applying a series of bipolar gradients that creates a zig-zag sampling pattern in 

k-space. This sampling strategy is in contrast to conventional sequences, in which only one 8F 

line is acquired after an excitation, making the sampling considerably slower. Also note that 

EPI lacks 180° refocusing pulses, echoes are formed by bipolar gradients in the frequency 

encoding direction. It means that the measured signal evolves under the envelope of 9/∗ 

relaxation, which makes the sequence sensitive to susceptibility differences such as BOLD 

contrast described in Section 3.1. 

 

Figure 3. A: Schematic illustration of the 2D EPI pulse sequence [7]. The first channel (RF) represents the 
application of radiofrequency excitation, the middle three channels the application of gradient waveforms in 
three orthogonal directions over time. The last channel depicts the temporal evolution of MR signal, where TEeff 
is the effective echo time corresponding to the acquisition of the middle  8F line. B: Sampling pattern of the k-
space [8].  
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3. Functional magnetic resonance imaging 

In a broader sense functional magnetic resonance (fMRI) refers to a series of MRI techniques 

with the common goal of obtaining functional information from living organisms. These 

methods include without the claim of completeness functional brain mapping, diffusion and 

perfusion techniques. However, in the commonly used narrower sense of the word only the 

functional brain mapping techniques are termed as fMRI. 

 Functional brain mapping attempts to detect and localize neural activity by creating 

contrast between active and passive states of neuronal ensembles within the central nervous 

system. All of these methods rely on the fact that neuronal activations and cerebral blood flow 

are coupled. There are several relevant contrast mechanisms for measuring associated changes 

in the blood flow. Contrast agent administration into the cerebral bloodstream is an invasive 

method and has not found widespread use. Since the early 1990s the Blood-oxygen-level 

dependent (BOLD) contrast is the dominant source of contrast in fMRI studies, which uses 

deoxyhemoglobin as an endogenous contrast agent [9]. Due to its dominant role BOLD-fMRI 

is often referred to as simply fMRI in the literature, whereby I also follow this practice 

throughout the thesis. Section 3.1 briefly summarizes the physiological and physical basis of 

BOLD contrast and also discusses its limitations. Arterial spin labeling is also a commonly 

used neuroimaging technique that can provide useful complementary information to BOLD-

fMRI, but its discussion is beyond the scope of this thesis. 

 While task-based fMRI studies1 has significantly contributed to our understanding of 

human brain function, there is a rapidly growing interest in resting-state fMRI (rs-fMRI), 

which can provide new insights on the functional architecture of the brain. Section 3.2 

discusses the motivation behind the acquisition of rs-fMRI and introduces the concept of 

resting-state networks. 

 

3.1 BOLD contrast 

BOLD contrast represents a non-invasive, indirect measure of neural activity induced by a 

complex interaction of physiological and physical factors. Understanding these factors is 

critical to the selection of proper pulse sequences and to the interpretation of BOLD-fMRI 

results. 

 

                                                 
1 Task-based fMRI refers to the experimental design where neuronal activations evoked by external 

stimuli (experimental paradigm) are detected. 
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3.1.1 Physical basis 

BOLD-fMRI relies on the fact that magnetic properties of oxyhemoglobin (oxy-Hb) and 

deoxyhemoglobin (de-Hb) are different. While oxyhemoglobin is a diamagnetic compound 

with a very small negative magnetic susceptibility (r ≈ −10Jt), deoxyhemoglobin is a 

paramagnetic molecule due to its unpaired electrons with a significantly higher magnetic 

susceptibility (r ≈ 10Ju). Since brain tissues also possess diamagnetic properties (due to their 

dominant water content), deoxyhemoglobin substantially distorts the external magnetic field 

present in the brain, which in turn results in a more rapid spin-spin relaxation in the 

surrounding tissue. It means that the 9/∗ relaxation time in and around the blood vessels2 

depends on the level of deoxyhemoglobin, where a decreased amount of deoxyhemoglobin 

causes a slower dephasing associated with a higher 9/∗. Thus, pulse sequences sensitive to 9/∗ 

effect show higher signal where blood is more oxygenated. 

The effect of dephasing scales with the square of the magnetic field, high magnetic 

fields (1.5T or higher) are therefore desirable for fMRI studies. An important aspect of the 

imaging sequence is that it must be 9/∗-weighted. Therefore, gradient echo sequences are 

dominantly used but spin echo sequences still show BOLD contrast because of diffusion 

effects. The amount of 9/∗-weighting in the image is determined by the echo time (TE). To 

obtain maximal difference between oxygenated and deoxygenated blood, the optimal value of 

TE must be equal to the 9/∗ of the particular tissue. However, in practice a lower TE is usually 

used to reduce signal dropouts due to magnetic inhomogeneities (see Fig.4). Besides 9/∗ 

sensitivity, applied sequences must also allow a rapid image acquisition. Most research is 

carried out using gradient-echo EPI sequences (see Section 2.5), because they satisfy the 

aforementioned criteria. 

 

Figure 4. Optimal echo time for BOLD imaging [10]. 

                                                 
2 Since arteries are fully oxygenated, BOLD effects take place only in the venous part of the blood 

stream, resulting in a venous nature of BOLD contrast. 
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3.1.2 Physiological basis 

In the early 1990s, Seiji Ogawa et al. have demonstrated that the local amount of 

deoxyhemoglobin (deHb) can be used to detect neuronal activity [9]. Brain activation triggers 

a complex sequence of cellular, metabolic and vascular processes that influence the deHb-

level around firing neurons and give rise to BOLD contrast.  

Upon neuronal firing, energy is required for the maintenance and restoration of 

neuronal membrane potentials. Since the internal stores of energy in the form of glucose and 

oxygen are scarce, energy must be continuously provided by the blood supply to the brain. 

Although the mechanism of the link between neuronal activity and blood flow is still under 

investigation, it is generally understood that neuronal activity is closely coupled with local 

cerebral blood flow through a chain of physiological processes known as neurovascular 

coupling. Neurovascular coupling tries to compensate the increased energy demand associated 

with neural firing by increasing the local cerebral blood flow (CBF) and – to a smaller extent 

– the cerebral blood volume (CBV).  

The hemodynamic response of the brain temporally changes the local amount of deHb 

as illustrated in Figure 5A. The figure shows the temporal behavior of several physiological 

parameters following neuronal firing. Immediately after the onset of stimulus, the cerebral 

metabolic rate of O2 (CMRO2) increases by appr. 5% to meet the increased energy demand of 

neurons. Extracting more O2 from the blood raises the local deHb amount resulting in an 

“initial dip” of the MR signal between 0 and 2 s. Due to the slower process of neurovascular 

coupling, the increase of cerebral blood flow lags the progression of CMRO2, but the increase 

of CBF by appr. 50% far exceeds that of CMRO2. Thus, the demand on oxygenated blood is 

overcompensated by the higher CBF resulting in a smaller local amount of deHb. Eventually, 

the reduction of deHb amount leads to an improved 9/∗-weighted signal (BOLD signal) since 

the more diamagnetic blood interferes with the external magnetic field less (9/∗ is higher). 

In summary, the BOLD signal is the result of a series of physiological and physical 

processes, which are often only partially understood. However, early studies have shown that 

the participating factors can be modeled as a linear system with the input of neural stimulus 

and output of 9/∗-weighted signal [11]. This linear system has a known impulse response 

function called hemodynamic response function (HRF) in this context. Figure 5B shows a 

typical HRF, which reflects the signal behavior in response to a brief neuronal firing. The 

signal rises to a peak over 4–6 seconds, before falling back to the original level (and typically 

undershooting slightly). 
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Figure 5. A: Schematic temporal behavior of several physiological parameters and the BOLD signal after the 
onset of a continuous stimulus [12]. B: Hemodynamic response function modeled as the sum of two gamma 
functions [13]. 

3.1.3 Limitations 

Although most fMRI studies use BOLD contrast due to its non-invasive nature, relatively 

high spatial resolution and contrast-to-noise ratio, and due to easily implementable 

measurements, there are several limitations of the method. First, BOLD-fMRI only allows an 

indirect measurement of neural activity through the deHb level of the cerebral vasculature. 

Intra- or intersubject differences of vascular properties (CBF, CBV) can lead to biased 

findings in task- and resting-state fMRI (for further discussion see Section 4.2.2).  

Other limitations come from the spatial and temporal properties of the HRF. The spatial 

effect of HRF on the signal is similar to a spatial blurring, where the full width at half 

maximum (FWHM) is magnetic field dependent and is around 3 mm at 3T [14]. This blurring 

is primarily due to large veins that drain extended areas and can exhibit higher changes in the 

deHb amount than smaller capillaries despite larger distance from the location of activation. 

As can be evident from Figure 5B, HRF also represents a temporal smoothing of the neuronal 

firing pattern, since the signal rises and falls within an interval of appr. 20 s in response to a 

single stimulus. 

 

3.2 Resting-state fMRI 

Human brain is constantly active even when the subject is not performing any explicit task. 

The detection of resting-state brain activity by BOLD contrast is referred to as resting-state 

fMRI, and in recent years this technique has proven to be a powerful method to describe 

functional architecture of the brain [15]. 
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3.2.1 Resting-state fMRI signal 

The intensity time series of a given voxel acquired by BOLD fMRI shows fluctuations even in 

the absence of external stimuli. These spontaneous, resting-state fluctuations (“BOLD 

fluctuations”) are associated with the baseline activity of the human brain and have been 

found to exhibit synchronous behavior among distant parts of the brain. Biswal et al. were the 

first to demonstrate such coherent BOLD signal intensities between contralateral motor 

cortices [16]. Figure 6 displays a replication of the coherent signal behavior between left and 

right motor cortices in one of our participants (for details about subjects, see Section 5.1). 

 

 

Figure 6. Averaged BOLD signals in the left and right motor cortices. The high association between the two 
signals are evident, reflected in a correlation coefficient of r=0.7961. 

 Many similar observations of spontaneous low-frequency fluctuations have led to the 

introduction of the concept of functional connectivity. Functional connectivity is defined as 

temporally correlated remote neurophysiological events [17][18], where it is not explicitly 

required that one event is influencing the other. A distinction must be made between 

functional and anatomical connectivity (as measured by diffusion methods), but accumulating 

evidence suggests that functional connections are sufficiently constrained by anatomy [18] 

and coherent low-frequency fluctuations relate to known anatomical systems. 

 

3.2.2 Resting-state functional networks 

The goal of measuring functional connectivity MRI (fc-MRI) is to identify connectivity 

patterns within and between distinct brain systems. These patterns are known as “intrinsic 

connectivity networks” or “resting-state networks3”. Figure 7 displays some functional 

systems including visual and auditory systems [20][21], the default mode network [1], the 

                                                 
3 The term resting-state is often used in the context of functional networks because they are most often 

measured at rest. However, it doesn’t mean that resting-state has a special status that maximizes the presence of 
coherent fluctuation in all systems. 
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working memory system [1], and the executive control network [21] that have consistently 

been found across subjects and across a range of analysis techniques. 

Functional networks have been demonstrated to be present during task-based 

paradigms and in varied states of consciousness. They persist during sleep [22] and anesthesia 

[23], suggesting they reflect, to a large degree, intrinsic processes. In addition, studies show 

differences across the lifespan, between individuals with clinical diagnoses, and across varied 

personality traits [24]. Functional connectivity measures may therefore serve as an indicator 

for psychiatric and neurological disorders, possibly allowing for improved early detection of 

such dysfunctions in the brain. 

 

 
Figure 7.  Resting-state functional networks identified by group-level independent component analysis [19]. 

It is generally accepted that human brain consists of interacting systems of 

anatomically connected areas. Furthermore, studies have hypothesized that there are two 

opposed, widely distributed brain systems, one consisting of regions routinely exhibiting task-

related activations such as somatosensory, visual or attention network, and the other 

consisting of regions routinely exhibiting task-related deactivations such as default mode 

network (DMN) [1]. Terms used to refer to these systems are “task-positive” and “task-

negative”. The DMN is probably the most studied network, and is associated with cognitive 

functions including autobiographical memory, envisioning the future, theory of mind and 

moral decision making [25].  
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4. Processing and analysis of resting-state fMRI data 

There are two major analysis approaches used for assessing functional connectivity in resting 

state data: seed-based correlation analysis (SCA) and independent component analysis (ICA). 

However, raw4 fMRI data require several manipulations, known as preprocessing steps prior 

to applying any analysis method. Spatial and temporal preprocessing steps are necessary to 

correct for spatial and temporal inconsistencies present in all fMRI data and caused by several 

factors such as physiological oscillations, subject head motion, inhomogeneities in the static 

magnetic field, timing differences of image acquisition etc. If uncorrected, these factors can 

seriously confound individual and group-level functional connectivity results. In Section 4.1 a 

series of computational procedures are described which are typically applied to both task- and 

resting-state fMRI data and operate (with exception of slice-timing-correction) in the spatial 

dimension of the data. Section 4.2 discusses the aforementioned seed-based correlation 

analysis with its properties, advantages and disadvantages. Since this method is particularly 

vulnerable to noise in the time domain, multiple temporal preprocessing steps are applied in 

order to reduce spurious noise and increase validity of the analysis. Section 4.3 describes the 

most commonly used temporal preprocessing steps in the context of resting-state data analysis 

(regression of nuisance signals and frequency filtering) highlighting the potential 

interpretative issues associated with these procedures. Seed-based correlation analysis is 

performed on data that have already undergone temporal preprocessing in order to minimize 

structured noise. In this chapter discussion of SCA precedes that of temporal preprocessing in 

an attempt to introduce the motivation why temporal processing needs to be included in the 

processing stream. 

 

4.1 Spatial preprocessing 

The processing steps discussed in this section can be performed using multiple software tools 

and packages that may implement these computational procedures somewhat differently. 

Since I used SPM85 software [26] throughout my analyses, I focus on describing these 

methods as implemented in this software. In this section only the key concepts of the spatial 

processing steps are explained, the exact order of steps and applied parameters are given in 

Section 5.2. Note that despite being a temporal processing step, slice-timing correction is also 

                                                 
4 Raw time series refers to the temporal dimension of the acquired and reconstructed dataset, on which 

only spatial manipulations have been performed (see Section 4.1). 
5 Statistical Parametric Mapping (SPM) software, Wellcome Department of Cognitive Neurology, 

London, UK, (www.fil.ion.ucl.ac.uk/spm/software/spm8/). 
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covered in this section because it is highly integrated into the spatial processing stream and it 

is not specific to resting-state data preprocessing. 

 

4.1.1 Slice-timing correction 

Functional MRI data are usually acquired using repeated two-dimensional pulse sequences 

like echo planar imaging that limit the effect of the excitation pulse to a single slice using the 

slice selection gradient (see Section 2.5). Therefore, slices of functional images are acquired 

at different time points throughout the repetition time. Depending on the TR and the slice 

scanning order6 (sequential/interleaved), these delays between individual slices may add up to 

significant temporal shifts over the 3D volume. To compensate for the temporal offsets 

between individual slices, slice-timing correction (STC) is applied to the functional data. 

In slice-timing correction, the individual slices are temporally realigned to a reference 

slice based on its relative timing using an appropriate resampling method. Figure 8 illustrates 

the temporal interpolation of individual slices to the reference slice (first slice) in both 

sequential and interleaved scanning order. The standard interpolating method is usually sinc 

interpolation. 

 

Figure 8. Schematic illustration of slice-timing correction using a: sequential and b: interleaved slice scanning 
order. Acquired data points are interpolated to the time point of the reference slice (first slice in this case) [27]. 

 

 

 

                                                 
6 Slice scanning order is the order in which individual slices of a volume are scanned. One approach is 

to use sequential ascending/descending slice acquisition, in which slices are acquired sequentially. Using 
interleaved scanning order the odd slices are recorder first followed by the even slice number (or vice versa) in 
order to avoid cross-slice excitation. 
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4.1.2 Realignment and the issue of head motion 

Head motion is a significant confound that can reduce the validity of fMRI studies and limit 

the effectiveness of the method. Despite the use of immobilization devices head motion can’t 

be fully eliminated due to long scan durations and the restrictive environment within the 

scanner. Furthermore, small head movements due to physiological processes including 

breathing, swallowing, etc. are also always present. 

The aim of using motion correction is to remove movement artifacts in fMRI time 

series, which can seriously degrade the quality of the data especially at the tissue boundaries 

including the edges of the brain. All of the fMRI analyses assume that each voxel uniquely 

represents a portion of the brain, which is not true anymore in the presence of head motion.  

Realignment attempts to correct for these head displacements by realigning 

subsequently acquired volumes to a reference volume using a least squares approach and a 6 

parameter rigid-body (three translation and three rotation parameters) transformation. The six 

parameters are estimated iteratively by analyzing how the source volume should be 

transformed in order to better match the reference volume. Following the optimization 

procedure the estimated motion parameters can be applied to the source volume to spatially 

resample the uncorrected volumes using an appropriate interpolating algorithm (usually a 3rd 

degree B-Spline interpolation). Figure 9A shows an example of the estimated motion 

parameters representing the translational and rotational displacements relative to the first 

volume. In contrast, Figure 9B illustrates the differential displacements as compared to the 

previous volume. Note that sudden movements are much easier to identify in the differential 

plot. 

Realignment alone is not sufficient to fully eliminate the effects of head motion. 

Although spatial displacements can be reliably corrected in image space, head motion also 

results in intensity changes in fMRI time series, which is particularly problematic in resting-

state fMRI, where the temporal signal-to-noise ratio7 is inherently low. First, movement of the 

head disturbs the homogeneous magnetic field that has been fine-tuned at the beginning of the 

scan session by “shimming”. This perturbation leads to unpredictable signal loss and image 

distortion in subsequent images. Second, since spins are excited sequentially slice-by-slice, 

motion in the slice selection direction changes the spin saturation profile in the acquired 2D 

slice. The resulting effect is called “spin history effect” because the signal intensity of a 

particular voxel depends on the history of excitation experienced by spins in this volume. 

                                                 
7 Temporal signal-to-noise ratio (tSNR) is defined as the ratio of the mean of a time series to its 

standard deviation. 
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Besides these two prominent examples there are a couple of other mechanisms that contribute 

to head movement induced artifacts. 

In summary, motion-related intensity changes make motion one of the most damaging 

and frustrating problem for resting-state fMRI studies. Intensity-related effects of head motion 

and possible corrections are discussed in more detail in Section 5.6. 

 

 

Figure 9. A: Six realignment parameters of a subject estimated by SPM. The three translational parameters (X, 
Y, Z) are scaled in mm on the left y-axis, the three rotational parameters (Pitch, Yaw, Roll) in ° on the right y-
axis. B: Time derivative of the realignment parameters calculated by backward difference. 

 

4.1.3 Coregistration 

Spatial coregistration is an intrasubject registration that aligns functional (usually the mean 

motion corrected image) and anatomical images of the individual subjects, so that functional 

data can be superimposed onto the correct anatomical location. Coregistration is usually based 

on the same rigid-body model discussed in the previous section; however, the cost function 

used during the iteration step is not the least sum of squares if the functional and anatomical 

images have different modalities. In this case mutual information is maximized; this approach 

works without the assumption that intensities of images to be coregistered match. Since the 
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number of iterations is limited, the images need to be approximately in the same 

location/orientation prior to coregistration. 

 

4.1.4 Segmentation 

Segmentation creates within-subject tissue probability maps for grey matter, white matter and 

cerebrospinal fluid using the high-resolution contrast-rich T1 weighted anatomical image and 

a priori information regarding the probability of a tissue type at each location. Individual 

segmented images are key to define grey matter masks for the functional connectivity 

analyses and to determine “noise regions” from which noise regressors are extracted (see 

Section 4.3.4). In SPM, segmentation is performed simultaneously with spatial normalization 

(next section) within the framework of the unified segmentation and normalization algorithm 

[28]. 

 

4.1.5 Normalization 

The human brain shows remarkable variability in its shape and morphology. However, it is 

essential for a group analysis that every subject’s brain is of the same size and orientation. In 

order to make individual brains comparable, the images (both functional and anatomical) are 

registered to a standard space8 through spatial normalization. Normalization involves 

minimization of the sum of squared differences between the template image and the source 

image of the same modality. In contrast to realignment and coregistration, normalization 

changes the size of the brain using a 12-parameter affine transformation. Usually a global 

non-linear warping algorithm is also applied in order to match the size and position of the 

template. The process of normalization and resampling is sometimes accompanied by 

changing the voxel size. 

Images are transformed into a common space through normalization where functionally 

homologous areas from different brains are as close as possible. However, there can still be 

anatomical differences among subjects. In addition, function and structure don’t match 

exactly resulting in a degraded inter-subject functional overlap. These factors can be 

(partially) compensated by blurring the normalized functional images. 

 
                                                 
8 There are two widely accepted standard stereotaxic coordinate spaces: Tailarach and MNI. These 

templates differ in size, shape and representativeness. Talairach brain is derived from one post-mortem brain of a 
60-year old woman and it has often been criticized for its suboptimal representativeness. The more commonly 
used MNI152 template of the Montreal Neurological Institute is derived from 152 T1-weighted images and is 
more representative for the population. Both stereotaxic spaces have their origin in the midpoint of the anterior 
comissure. 
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4.1.6 Spatial smoothing 

Smoothing is performed by blurring functional images with a typically Gaussian filter 

characterized by its full-width-at-half-maximum (FWHM). Spatial smoothing serves multiple 

purposes. Besides increasing the signal-to-noise ratio by suppressing high spatial frequency 

noise, it increases the functional overlap among subjects and thus compensates for the slight 

differences between the functional and anatomical data. In resting-state fMRI analysis, spatial 

smoothing also has an impact on the calculated functional connectivity measures. In most 

cases the effect of smoothing is not critical since time series are averaged within a defined 

region. However, in the absence of averaging or in case of a small ROI spatial smoothing can 

significantly improve group-level results. 

 

4.2  Analysis methods 

There is a rich toolkit of analyzing preprocessed fMRI data in the literature, ranging from 

simple bivariate measures characterizing the similarity between voxel or ROI time series at 

multiple locations through graph theoretical measures to sophisticated multivariate 

exploratory techniques such as Independent Component Analysis. These methods use highly 

different approaches, assumptions and thus capture different aspects of the human brain 

function. Within the framework of the thesis I exclusively used seed-based correlation 

analysis, since this is the most widely applied and most easily interpretable measure of 

synchronicity in brain function. Besides, it was shown on simulated and human fMRI data, 

that correlation can be quite successful in terms of sensitivity to network connection detection 

in contrast to higher-order statistics and lag-based approaches [29]. 

 

4.2.1 Seed-based correlation analysis 

Seed-based correlation analysis is based on calculating cross-correlation coefficients among 

time series of voxels (or ROIs). In practice and throughout the thesis Pearson’s product-

moment correlation coefficient is used, which is shortly referred to as “correlation coefficient” 

and denoted by c. It is a dimensionless bivariate measure describing the linear statistical 

dependence between two variables or time series. Correlation coefficient for a sample is the 

scaled version of the covariance between two time series and takes values between -1 and 1. It 

is given by the following formula: 

c = ∑ (vwJvx)(ywJyx)zw{L|∑ (vwJvx)zw{L  |∑ (ywJyx)zw{L
    (23) 
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where }� and ~� denote the two signals to be correlated at time point �, } and ~ are the 

average signals over the course of the measurement and � is the number of the data points 

involved in the analysis. 

Seed-based correlation analysis requires strong a priori assumptions for the selection of 

a voxel or ROI from which time series are extracted. This extraction is straightforward in case 

of a single seed voxel; however, when using a ROI as a seed an estimator of the regional 

activity is needed as well, which is typically the average signal within the ROI. Correlating 

every seed’s time series with all of the other seeds’ time series can create voxel-wise or 

parcellated whole-brain functional connectivity maps, sometimes referred to as functional 

connectome in contrast to anatomical connectome as measured by diffusion-based methods. 

For group-level SCA, subject-level sample correlation coefficients are Fisher 

transformed as follows: 

 =  ./ ln H._�.J�I    (24) 

Fisher transformation facilitates hypothesis testing about the value of the population 

correlation coefficient g between two variables by making sample correlation coefficients 

approximately normally distributed. 

 

4.2.2 Advantages and pitfalls 

The SCA method has proven to be useful in identifying several functional networks spanning 

across the brain. The main advantage of SCA over other methods is its straightforward 

interpretability; it reveals the network of regions most strongly functionally connected with 

the seed voxel (or ROI). Furthermore, previous work has shown that functional connectivity 

measures can be estimated with moderate to high reliability by SCA [30]. 

 While being an attractive approach for many researchers, SCA has some drawbacks 

that need to be taken into account during analysis and interpretation of the results. Most 

importantly, strong correlations between the time series of two regions do not imply causal 

relationship between them, it tells nothing about the exact order of events and causal 

relationships in the dynamic processing stream. Moreover, the functional connection between 

two nodes is not necessarily direct (it can be triggered or modulated by a third node). 

 Since functional MRI enables the measurement of neural activations indirectly through 

vascular responses, the calculated correlations between BOLD time series are also affected by 

various neurovascular factors such as the shape and amplitude of the hemodynamic response 

function. In addition, time series are substantially corrupted by noise of physiological and 
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hardware-related origin resulting in varying temporal SNR across the brain (see Section 

5.3.1). Due to the indirect nature of rs-fMRI and the fact that hemodynamic responses and 

temporal signal-to-noise ratio are spatially dependent, similarity measures such as correlation 

coefficient reflect apparent correlations of the underlying neural power fluctuations. Figure 10 

illustrates the principle of correlation estimation between BOLD time series and also shows 

potential confounding factors. 

 
Figure 10. The correlation between the underlying neural fluctuations of two distant regions (blue and red time 
courses on the left) is denoted by g. The measured BOLD time series is modeled by the sum of a BOLD 
component (�. and �/ for Region 1 and 2, respectively) and a noise component (�. and �/, respectively), where 
the BOLD component is obtained by convolving the neural power fluctuations with the hemodynamic response 
function that represents the neurovascular coupling effect. Apparent correlation coefficient c is computed 
between the measured BOLD signals ;. and ;/. Note that measured ;. and ;/ depend on the neurovascular 
coupling pathway and the level of noise. Different hemodynamic response functions (blue and black curves for 
Region 1, red and green curves for Region 2) yield different BOLD measures and therefore different apparent 
correlation coefficients [31]. 

Another drawback of SCA lies in the a priori assumptions underlying ROI definition. 

Extracting average time series from inaccurate ROIs that do not match actual functional 

boundaries can be highly damaging to network estimation [29]. 

SCA applied to the whole time series implicitly assumes that statistical interdependence 

of neuronal events is constant throughout the recording period. However, recent papers 

suggest that dynamic measures (e.g. dynamic correlation obtained from sliding-window 

analysis) may index changes in macroscopic neural activity patterns and point out that 

underlying processes may not be statistically stationary [32] [33]. In this thesis I refrain from 

considering dynamic effects and treat correlations as stationary measures. 
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4.3  Temporal preprocessing 

Resting-state fMRI data contain coherent fluctuations unrelated to neural activity. These noise 

components originate mainly from physiological artifacts (caused by respiration, cardiac 

action, residual subject motion etc.) as well as hardware instabilities and magnetic field drifts. 

Since seed-based connectivity analysis basically involves assessment of temporal similarities 

in the dataset, coherent signal fluctuations from non-neural processes may result in biased 

(typically overestimated, see Section 5.4.3) functional connectivity estimation. To obtain 

unbiased estimates of connectivity, adequate temporal preprocessing is critical. 

 Several temporal preprocessing strategies (also known as denoising procedures) have 

been established; the most important ones are the linear-regression based approaches and 

denoising using independent component analysis. These methods can be used in combination 

with each other and may also be complemented by other procedures such as filtering in the 

frequency domain. In this thesis I focused on the linear regression based approaches in order 

to optimize their usage in terms of sensitivity and specificity of network detection. The 

following sections describe the basic principles of these preprocessing steps and discuss the 

methodological and associated interpretative issues. 

 

4.3.1 Filtering 

Frequency filtering attempts to isolate frequency components most relevant to the BOLD 

signal of neural activations. It takes advantage of the fact that noise components may be 

represented at distinct frequencies from the neural-related signal of interest. For instance, the 

dominant respiration- and cardiac action related signals are present at around 0.2 and 1 Hz, 

respectively (for a power spectra of BOLD signals, see 5.3.2). In contrast, BOLD fluctuations 

that most consistently present resting-state correlations occur within the range of 0.01 to 0.08 

Hz [16]. For this reason functional connectivity analysis is typically performed on low-pass 

filtered datasets retaining frequencies under appr. 0.1 Hz below the usual respiration and 

cardiac action rates. High-pass filtering is also used in most cases with cut-off frequency 

below the lowest frequency of interest. 

However, a low-pass filter is unable to remove noise components of frequencies 

higher than the Nyquist frequency (half of the sampling rate) or lower than the low-pass cut-

off. Given a typical TR of 2 s (with a Nyquist frequency of 0.25 Hz) as used in this thesis, 

breath-to-breath respiratory effects are probably filtered out, but cardiac effects and their 

harmonics, as well as the harmonics of the respiratory noise, are not critically sampled and 
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can be aliased into the retained frequency range. Additionally, respiration and cardiac rate 

fluctuate also at low frequencies, further confounding the BOLD signal. Furthermore, residual 

motion and scanner artifacts are not restricted to a narrow frequency band and spread over the 

whole spectrum [34]. To achieve critical sampling some studies use fast sampling rates (200-

500 ms) at the expense of brain coverage when using conventional BOLD sequences [35]. 

Another option is to apply additional preprocessing in form of multidimensional linear 

regression, which allow for removing a number of confounds (see next section). 

While resting-state fluctuations are described as low-frequency fluctuations below 0.1 

Hz, accumulating evidence suggests that valid and useful neural-related signal is present up to 

0.2 Hz, possibly even up to 0.5 Hz [36]. Thus, applying low-pass filter inherently carries the 

risk of removing useful signal. For this reason some studies refrain from implementing it in 

the preprocessing pipeline. 

 

4.3.2 Physiological noise regression 

As was discussed in the previous chapter, unwanted residual physiological artefacts are still 

present in the retained frequency range. Physiological noise regression tries to isolate noise 

components from the fMRI data and incorporate these signals as nuisance regressors in the 

general linear model [37].  

Reasonable regressors for physiological noise can be obtained in several ways. The 

most straightforward approach is to monitor respiratory and cardiac rates using respiratory 

belts and pulse oximeters, respectively [38]. Adequate nuisance regressors can be modeled 

based on these measures that can be used to correct data retrospectively. However, the timing 

of these physiological signals in the brain is not obvious since they are measured in different 

parts of the body.  

If monitoring devices are not available (as was the case during the measurements done 

for this thesis), effective estimators of non-neural signal fluctuations need to be derived from 

the fMRI data. Rigid-body realignment parameters obtained from motion correction (see 

Fig.9) can serve as such regressors, since it is possible that BOLD signal intensity depends on 

the spatial location and orientation of the brain (e.g. because of the different position of the 

voxels from the receiver coil). Differential motion parameters also qualify as nuisance 

regressors, since movement leads to instant changes in the signal intensity due to spin-history 

effect and perturbation of the magnetic field, which may be modeled as a linear change in the 

signal intensity. Additional commonly used regressors include average signal of the cerebral 

white matter (WM) and the ventricles containing cerebrospinal fluid (CSF). The mean WM 
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and CSF time series are calculated by averaging signal over all voxels within a WM or CSF 

mask for each time point. Regression of signals from WM and CSF is motivated by the fact 

that these regions contain a relatively high proportion of noise caused by the cardiac and 

respiratory cycles [39] and they do not reflect neural fluctuations. It is further assumed that 

motion-related as well as physiological effects cause the same pattern of activity over time in 

the gray-matter ROIs (although not necessarily at the same magnitude) [40]. Eventually, 

successful estimation and correction for these non-neural noise sources allow for the 

exclusion such confounding effects from the analysis. Regression of the global signal (the 

average signal over all voxels of the brain) has also been proposed for artifact reduction [41], 

but it presents challenging interpretative issues discussed in detail in Section 4.3.3. 

Generally, the acquired fMRI time series are analyzed within the framework of 

general linear model (GLM). This statistical linear model assumes that the time series of a 

voxel can be written as: � = � ∙ � + �     (25) 

with the measured time series �, the design matrix � containing all regressors (also known as 

predictors or explanatory variables) in its columns, the vector of parameter estimates � and 

the residuals �. The errors are assumed to follow a multivariate normal distribution. The case 

of a single regressor is called simple linear regression. In contrast, multiple linear regression 

(multidimensional linear regression) refers to the case when multiple regressors are 

incorporated in the model, which is typical for SCA preprocessing.  

This model thus assumes that the relation between the observed time series � and the 

columns of the design matrix � (regressors) is linear with the scaling factors � and with an 

unobserved � random variable adding noise to the linear model. Our goal in SCA 

preprocessing is to best model the linear contributions of physiological and non-physiological 

noise in the fMRI time series by incorporating regressors expected to reflect noise (motion 

parameters, WM/CSF signal etc.) in the design matrix. This “best modeling” is usually 

defined in terms of yielding the smallest least squares of the error. Since the term � is 

observed and � is predetermined, this is achieved by finding the � vector that minimizes the 

sum of squares of the error term �. This procedure is also called “fitting the model” and can 

be mathematically expressed as: 

� �� = H� − � ∙ �I H� − � ∙ �I� =  o� − ��po� − ��p� → min  (26) 
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The term � �� is the vector notation for the sum of squares. The optimal � weights using the 

ordinary least squares approach are obtained non-iteratively by the following equation: 

� = H���IJ. ���     (27) 

provided that H���IJ.
 exists. After determining the optimal �� weights the corrected data set 

can be calculated as: 

����� = � − � ∙ ��     (28) 

Multiple linear regression is performed on a voxel-by-voxel basis and the resulting ����� corrected data sets will be used to compute cross-correlations for assessing functional 

relations between voxels or ROIs. 

 

4.3.3 Regression of global signal 

Global signal regression is a preprocessing technique in which the mean global signal is used 

as a temporal covariate and regressed out using linear regression. Is has been shown that 

regression of the global signal is beneficial for improving the predictive power of correlation 

measures and improve the specificity of functional connectivity analysis [42]. 

However, the validity of global signal regression has recently come under debate 

because it has the ability to introduce artifactual negative correlations between brain regions. 

Since the global signal contains all resting-state signal changes as well as all sources of noise 

including physiological and non-physiological effects, its regression can reduce non-neural 

signal correlations to a greater extent. Windischberger et al. [43] demonstrated with a simple 

example that truly negatively correlated (anticorrelated) signals remain to be anticorrelated 

after global signal correction, whereas uncorrelated signals are shifted towards negative 

correlation coefficients. According to Murphy et al. [44], voxel correlation analysis of global 

signal corrected data sets always finds negative correlations regardless of the seed voxel 

chosen. Based on these studies, there is a significant risk of introducing anticorrelations by 

global signal regression. 

The primary difficulty of global signal regression is that the extent to which the whole-

brain signal represents neurophysiological signal or noise is generally not known. It is also 

unclear how the whole-brain signal correlates with signals of true neurophysiological origin. 

However, the whole-brain signal at rest has been found to correlate with the breath-to-breath 

variation in the end-tidal partial pressure of carbon dioxide [45]. 
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The fact that global signal regression forces the existence of negative correlations by 

centering the correlation coefficients around zero may have important implications regarding 

the validity of large anticorrelated networks discussed in Section 5.4.3. The emergence of 

such networks after performing global signal regression can have multiple reasons. It is 

possible that anticorrelated brain regions are simply the result of shifting the correlation 

histogram to be centered around zero. On the other hand, neurophysiologically meaningful 

negative correlations may only become detectable after the removal of nonspecific noise 

correlations. Knowing the exact origin of anticorrelations is critically important, however, at 

present there is no general agreement on this issue [18][43]. Based on these considerations it 

seems obvious that anticorrelations should be approached with caution. 

Despite the concerns raised about the validity of global signal regression it is still a 

common and useful processing technique in some situations. However, alternate methods 

have recently been developed to circumvent the potential issues with global signal regression. 

Of particular importance is the anatomical component based noise correction (aCompCor) 

denoising procedure, which has been shown to produce similarly robust anticorrelated 

networks without the inclusion of global signal regression [46]. 

 

4.3.4 Anatomical component based noise correction method 

The concept of “noise region of interest” has already been introduced in Section 4.3.2. Noise 

ROIs are regions such as white matter and cerebrospinal fluid, in which fMRI signal is not 

expected to reflect any neural activity, thus representing primarily physiological noise. Based 

on the assumption that signal from noise ROIs can be used to accurately model physiological 

fluctuations in gray matter regions, it is a common practice to regress out mean signal from 

each of these noise ROIs in order to reduce non-specific correlations. The novel anatomical 

component based noise correction (aCompCor) approach extends this idea by extracting 

multiple signals from these areas using the technique of principal component analysis [47]. In 

comparison to the mean signal from noise regions, signals captured by principal components 

derived from these noise ROIs serve as a richer representation of the underlying physiological 

noise and can better account for voxel-specific phase differences in physiological noise due to 

the potential of principle component analysis to identify temporal pattern of physiological 

noise. The main advantage of the aCompCor approach is its ability to significantly reduce 

noise in the fMRI dataset without the inclusion of potential signals of neural origin [46]. 

The first step of applying aCompCor is the determination of noise ROIs from which 

principal components will be extracted. Posterior probability maps created during 
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segmentation of the anatomical image (see Section 4.1.4) are used to identify voxels that 

consist primarily of either WM or CSF. Each of the probability masks is thresholded (usually 

at � > 0.5) to exclude voxels that most probably consist of other type of tissue. Subsequent 

erosion of the masks is also used sometimes to minimize partial volume effects. Figure 11 

illustrates thresholded and eroded WM and CSF probability masks with the red areas showing 

the voxels that survive one-voxel erosion. Subsequently, fMRI timeseries in the functional 

volumes are extracted within the resulting masks. Since spatial smoothing blurs the 

boundaries of different tissue types, it is important to extract fMRI signal for each noise 

region from the unsmoothed dataset. An alternative method of defining noise regions is to 

include voxels with the lowest tSNR (usually referred to as “tCompCor”) values based on the 

assumption that they can suitably characterize physiological noise, but this approach is less 

commonly used and will not be tested in the thesis. 

 

 

Figure 11. A: White matter mask created by one-voxel eroding the thresholded (� > 0.5) WM probability map 
(red area), overlaid on the WM probability map (grey area). B: CSF probability map in grey, thresholded and 
eroded mask in red. 

Principal component analysis (PCA) is a statistical procedure that converts a set of 

observations (variables) with possible redundancies to a set of linearly uncorrelated variables 

using orthogonal transformation. It thus involves a “re-expression” of the original dataset in a 

way that the resulting data possess some useful properties. The re-expressed variables are 

called principal components and their number is less than or equal to the original 

observations. 

Suppose we have $ observations (row vectors) contained in matrix �: 

� = � ��:��
� 
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This expression of the data may not be optimal as there can be correlations among the 

observations leading to redundancies in the dataset. The covariance matrix �E quantifies all 

dependencies between pairs of observations9: 

�E = .�J. � ��    (29) 

�E is an $ x $ symmetric matrix where the ���� element is the variance or covariance 

between �� and ��. The diagonal terms of �E are the variances of the observations, while the 

off-diagonal terms are the covariances between observations. 

 Principal component analysis tries to eliminate covariances among observations by 

changing the basis of expression of the original dataset. Let � be the orthonormal matrix 

associated with the change of basis that performs a linear transformation on data matrix �: 

� = � �     (30) 

where � is the matrix of observables expressed with the new basis vectors. The covariance 

matrix of the re-expressed data is 

�F = .�J. � ��    (31) 

The goal of PCA is to find � such that �F is diagonalized corresponding to zero 

covariances among observations. Let us rewrite �F in terms of the selection of �: 

�F = .�J. � �� = .�J. H� �I H� �I� = .�J. � H� ��I �� = .�J. � � ��  (32) 

where � =� �� is an $ x $ symmetric matrix. PCA takes advantage of the fact that a 

symmetric matrix can be diagonalized by a matrix of its orthonormal eigenvectors. 

Furthermore, by selecting � to be the a matrix where each row is an eigenvector of � ��, � 

can be decomposed as � = ��� �, where � is a diagonal matrix and �� is the matrix of 

eigenvectors of � arranged as columns. Further evaluation of �F yields: 

�F = .�J. � � �� =  .�J. H� ��I � H� ��I = .�J. H� �J�I � H� �J�I = .�J.  � (33) 

                                                 
9 The normalization factor 

.�J. is used instead of the simple 
.� factor in order to provide unbiased 

estimator for the covariance. 
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where I used the fact that the transpose of an orthogonal matrix is its inverse. It is evident 

from this result that choosing  � to contain the eigenvectors of  � �� in its rows 

diagonalizes �F. After applying this �, the rows of � will become the principal components. 

The principal components are arranged in such a way that the first principal component has 

the largest variance and subsequent components possess decreasing variance always under the 

constraint that they are uncorrelated with the preceding components.  
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5. Optimization of preprocessing strategy in resting-state data 
 

5.1 Subjects 

Thirty-two healthy participants (mean age: 25.3 ± 5.3, 20 males) were included in the study, 

which was approved by the Ethics committee of the Semmelweis University. Participants 

were clinically normal young adults without a history of neurological or psychiatric illness, 

and not taking any psychoactive medications. Signed informed consent was obtained prior to 

participation. Two subjects were excluded from all of the subsequent analysis due to 

extensive head motion during scanning (see Section 5.6.3). 

 
5.2 Methods 

All data were collected on a 3T Philips Achieva scanner located at MR Research Center of 

Semmelweis University and equipped with an 8 channel SENSE head coil supplied by the 

vendor. The functional imaging data were acquired using a gradient echo echo-planar imaging 

(EPI) sequence sensitive to blood oxygenation level-dependent (BOLD) contrast with the 

following parameters: 36 contiguous axial slices of 4 mm thickness aligned parallel to the line 

connecting the anterior and posterior commissure and perpendicular to the median sagittal 

plane providing whole brain coverage, TR: 2000 ms, TE: 30 ms, matrix size: 80 x 80, voxel 

size: 3 x 3 x 4 mm, flip angle: 70°, slice order: ascending. Each BOLD run consisted of 260 

volumes, making the total acquisition time nearly 9 minutes. Additionally, a high-resolution 

isotropic T1-weighted Turbo Spin Echo (TSE) structural image was obtained for each subject. 

Subjects were instructed to simply rest in the scanner and not to fall asleep. The 

scanner room was darkened. Earplugs were used to attenuate scanner noise and head motion 

was restrained with a foam pillow. We adopted an eyes-open approach because a previous 

fMRI study indicates that resting with eyes open results in more robust estimates of functional 

connectivity within the default mode network and dorsal attention system [18] and we also 

wanted to minimize the risk of subjects falling asleep. 

A series of preprocessing steps was conducted that are common to most fMRI 

analyses. Spatial preprocessing was performed using SPM8. The first four volumes of each 

run were discarded by the scanner as dummy acquisitions to allow for T1-equilibration 

effects. Slice acquisition dependent time shifts were corrected on a volume-by-volume basis. 

6-parameter rigid body translation and rotation from each volume to the first volume were 

used to correct for head motion. Then, the high-resolution anatomical image was coregistered 
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to the mean functional image. Normalization was achieved by computing affine and non-

linear transforms connecting the T1-weighted anatomical image with a T1 template in the 

Montreal Neurological Institute (MNI152) atlas space [48]. In the same step, segmented 

probability maps were also created both in the native space and in the normalized stereotactic 

space. Data were resampled to 2-mm isotropic voxels and spatially smoothed using a 4 mm 

FWHM Gaussian kernel. Each dataset was masked using the freely available MNI 

brainmask10 bundled with SPM to eliminate extracerebral tissues from the further analysis. 

 
5.3 Signal and noise in the data 

In this section I analyzed some properties of the acquired dataset: its temporal signal-to-noise 

ratio and power spectrum. These characteristics can help better understand the effect of 

multiple noise sources on the data and therefore serve as guides for establishing an optimal 

preprocessing strategy. 

 

5.3.1 Temporal signal-to-noise ratio 

While spatial SNR is used to quantitatively describe the quality of anatomical MR images, 

tSNR has proved to be a useful measure of image time course stability in fMRI images. tSNR 

depends on hardware related factors (field strength, coil quality, quality of shimming etc.), 

data acquisition parameters (type of pulse sequence, slice thickness, voxel size etc.) and 

physiological noise. In particular, tSNR has been found to be a good predictor of the extent to 

which physiological noise corrupts resting-state datasets [49]. As will be seen in Section 

5.6.1, tSNR can be used to identify subjects with high level of head motion. A good signal 

quality with high tSNR is particularly important for seed-based correlation analysis, since 

correlation values can be seriously affected by low tSNR values across the brain. 

 It is expected that different parts of the brain are more susceptible to physiological 

noise and other data instabilities. In order to assess this spatial dependency, temporal SNR 

was calculated on a voxel-by-voxel basis from the unsmoothed dataset. Masks created by 

thresholding the segmentation probability maps at 50% were used to extract signals from the 

GM, WM and CSF to assess the tissue-specific differences in the tSNR. Voxel-wise tSNR 

was averaged within each tissue mask. The tissue-specific mean tSNR with its associated 

standard deviation across the 30 subjects was found to be the following: ¢£. ¤� ±  ¥£. ¤¤ for 

GM, �¦§. ¥¨ ±  ¨£. ¥© for WM and ¥¢. ¢� ±  ¦¤. ©§ for CSF. These results are consistent 

                                                 
10 Applied template: SPM apriori binary brain mask available at: spm/apriori/brainmask.nii. 
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with other studies [50] and suggest that cerebrospinal fluid is the most sensitive tissue to 

physiological noise followed by grey and white matter. Extracted signals from WM and 

particularly from CSF can thus be a good estimator of physiological variations during the 

regression of nuisance variables. 

 Figure 12A displays a slice of the voxel-by-voxel tSNR map averaged across subjects, 

using the imaging capabilities of MRIcroN11. Note that tSNR variations closely resemble 

anatomical structures with the ventricles and edges of the brain having the lowest values. 

Color-coded tSNR values projected onto the surface of the standard brain template12 of 

MRIcroN are also depicted in Fig.12B, using the 3D visualization of MRIcroGL13. tSNR is 

generally lower at the cortical surface but there are regions with particularly low signal 

quality including orbitofrontal cortex or inferior temporal lobe. These signal instabilities are 

caused by the high magnetic susceptibility differences between these areas and neighboring 

air-filled cavities (ear canal, nasal cavities). On the other hand, some regions (particularly the 

inferior parietal lobe) exhibit excellent tSNR. 

 

Figure 12. A: Grayscale map of tSNR averaged across subjects (slice MNI coordinate: z=6). B: Color-coded 
surface projections of the average tSNR map. 

 

5.3.2 Power Spectrum 

Power spectrum (power spectral density) is a mathematical tool that allows us to obtain the 

portion of a discrete signal’s power falling within a given frequency bin. Peaks in the 

spectrum indicate dominant signal components. In this section I analyzed the frequency 

spectra of BOLD time series in an attempt to test the hypothesis that resting-state BOLD 
                                                 

11 MRIcroN Software of McCausland Center For Brain Imaging: 
http://www.mccauslandcenter.sc.edu/mricro/mricron/install.html 
12 Applied template: ch2.better.nii.gz 
13 MRIcroGL software of the same insitute as in 9: http://www.mccauslandcenter.sc.edu/mricrogl/ 
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signals are primarily low-frequency fluctuations and to identify signal components unlikely to 

be modulated by neural activity. 

 The same tissue masks as applied in Section 5.3.1 were used to extract tissue-specific 

voxel time series from the unsmoothed dataset. Power spectrum of each voxel’s time series 

was computed using the Fast Fourier Transform (FFT) implementation of Matlab14. Given the 

temporal resolution of 2 � and the 260 data points, the Nyquist frequency was 0.25 ª  with a 

frequency resolution of 0.00192 ª . Power spectra within each tissue type and across 

subjects were averaged and plotted on log-log scale in Figures 13A,B,C. Furthermore, the 

time series corresponding to GM voxels underwent temporal preprocessing and the resulting 

mean power spectrum was also plotted in Fig.13D. 

The group-level average power spectra were found to be similar in each tissue type. In 

general, the power decreases with increasing frequency, however, an increase in power is 

observed around 0.2 ª  with peak value at 0.2385 ª . This peak reflects the respiratory-

induced breath-to-breath signal variations corresponding to a typical period of 4-5 s.  Noise 

sources of higher frequencies cannot be critically sampled and are therefore aliased towards 

the low-frequency bands. Individual power spectra of some subjects also exhibit significant 

peaks at 0.1 ª , which has been shown to be a characteristic frequency of vasomotor action 

that cause arterial blood pressure to fluctuate rhythmically [51] but this peak is not observable 

in the group level. Also note that the highest power in CSF spectrum compared to other 

tissues is a direct consequence of the higher fluctuations associated with a lower tSNR (see 

Section 5.3.1). 

Zarahn et al. fitted the BOLD power spectrum with a power-law expression and found 

a 1/= behavior with respect to the frequency [52].  In numerous other studies, BOLD signals 

are consistently referred to as “low-frequency” or “1/=” signal. The obtained spectra seem to 

corroborate this power-law behavior, since power values appear as straight lines up to a 

certain limit. Power law functions of the form «/=¬ were fitted to the individual spectra 

restricted to the interval of 0 − 0.15 ª  and following ­ values (negative slope) were found: �. §�¤¢ ± �. �©¥¨ for GM, �. ©¤©¥ ± �. ¦�£� for WM and �. ©�¨� ± �. �¥©£ for CSF. In 

fact, these negative slope values suggest an approximate 1/= behavior. Interestingly, the 

power spectra of the signals from WM and CSF also decreases according to power law 

implying that power law behavior is an intrinsic characteristic of the BOLD signal 

irrespective of the tissue type. The slope of GM power spectrum and therefore the fraction of

                                                 
14 MATLAB 6.1, The MathWorks Inc., Natick, MA, 2000. 



38 
 

0,01 0,1
100

1000

10000

A

0.2385 Hz

 P
o

w
e
r 

S
p

e
c
tr

u
m

 (
a

rb
it
ra

ry
 u

n
it
)

    Mean Power Spectrum of WM signal

Frequency ( Hz )

0,01 0,1

1000

10000

    Mean Power Spectrum of GM signal

P
o

w
e
r 

S
p

e
c
tr

u
m

 (
a

rb
it
ra

ry
 u

n
it
)

Frequency ( Hz )

0.2385 Hz

C

 

0,01 0,1

10000

100000

B
   Mean Power Spectrum of CSF signal 

P
o
w

e
r 

S
p

e
c
tr

u
m

 (
a
rb

it
ra

ry
 u

n
it
)

Frequency ( Hz )

0.2385 Hz

0,01 0,1

100

150

200

250

300

350

400

450

D     Mean Power Spectrum of regressed GM signal

P
o
w

e
r 

S
p

e
c
tr

u
m

 (
a
rb

it
ra

ry
 u

n
it
)

Frequency ( Hz )

0.2289 Hz

Figure 13. A: Group-level average power spectrum of voxel time courses within the white matter mask. B: 

Group-level average power spectrum within CSF mask. C: Group-level average power spectrum within grey 

matter mask. In A,B,C, voxel time courses were not temporally preprocessed. D: Group-level average power 

spectrum of temporally preprocessed time courses within GM mask. Note the presence of a peak between 0.2 

and 0.25 Hz in all figures. 

 

low frequencies are higher than those of the other tissues, which may be caused by the 

hemodynamics that act as a low-pass filter. However, the extent to which hemodynamic 

response function affect the power spectrum is generally not known. 

 I also tested whether regression of signals from noise ROIs is able to remove the 

respiratory-induced peak at 0.2 ª  and higher. Five principal components from the WM and 

CSF masks, motion parameters as well as a linear trend (for details, see Section 5.4.2) were 

regressed out voxel-wise. The peak is still present in the power spectrum of the denoised data 

(Fig.13D) suggesting that linear regression of noise estimator signals alone is not enough to 

eliminate all non-neural components. Furthermore, the power of frequencies below 0.01 ª  is 

highly decreased due to linear detrending. To restrict correlation analysis to a frequency band 

dominated by neural activity induced fluctuations, a frequency band bass filter with low and 
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high cut-off frequencies was created. The lower limit of the band was chosen to be 0.01 ª , 

because frequencies below are primarily resulted from the linear trend of the signal. The 

higher cut-off frequency is harder to determine as neural related fluctuations do not cease at a 

single frequency. However, an upper limit of 0.1 ª  appears to be a good compromise with 

respect to the high power of noise above this frequency. Using similar considerations, most 

studies apply a low-frequency cut-off of around 0.008 − 0.1 ª , and a high-frequency cut-off 

between 0.08 − 0.15 ª  [18][43][46]. 

 

5.4 Influence of temporal preprocessing steps on connectivity measures 

In this section I applied several multidimensional linear regression approaches to remove 

artificial coherencies in the resting-state data from 30 subjects. Section 5.4.1 introduces the 

definition of reference ROIs, while detailed description of temporal processing steps are 

discussed in Section 5.4.2. I examined the impact of preprocessing steps on sensitivity and 

specificity of functional connectivity measures in Section 5.4.3 to provide recommendations 

for optimization. 

 

5.4.1 Region of interest definition 

In order to run a performance comparison between different preprocessing approaches, 

several quantitative metrics need to be defined that can be used to assess improvements or 

degradations in functional connectivity measures. Similar to the approach in [18] and [43], a 

set of a priori defined networks were chosen to construct metrics that represent either 

estimates of true neural correlations (signal metrics) or an estimate of non-neural correlation 

(noise metric). The two “signal networks” selected to create signal metrics were the default 

mode network (DMN) and the dorsal attention system [1]. Each of these well-known 

networks has multiple nodes with strong correlations among them. The two signal metrics 

were defined as the mean correlation coefficients among the nodes within each of these 

networks. Noise metric was estimated as the mean correlation coefficient among a reference 

set of regions including primary motor, visual and auditory cortex, among which no 

correlation is expected, since they are part of independent functional systems [53]. Note that 

in contrast to the signal metrics, the noise metric represents an averaged between-network 

coefficient. Furthermore, since default mode network is a task-negative and dorsal attention 

system is a task-positive system, the mean value of the pairwise between-network correlations 

among the nodes of these networks can serve as an anticorrelation signal metric. Throughout 
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the following sections, these metrics were used as a means to assess signal and noise for all 

the subsequent processing strategies. 

Identification of nodes within each of these networks were performed as follows. As a 

seed region, posterior cingulate cortex (PCC) was selected, because it has been found to be a 

major hub in the default mode network [54]. The MNI coordinates of this PCC seed were (0, -

53, 26) based on previous studies and the generated seed ROI had a radius of 10 mm [18]. A 

correlation map for each subject was created by computing correlation coefficients between 

the mean time series within the PCC seed and the time courses of all acquired voxels within 

the brain mask. Subsequently, group level map was obtained by averaging individual 

correlation maps across subjects. While the arbitrary selection of the PCC coordinates may 

have influences on the individual correlation maps, significant differences using slightly other 

seeds is not expected on the group level. Centers of well-established nodes of the DMN 

including left lateral parietal cortex (LLP), right lateral parietal cortex (RLP) and medial 

prefrontal cortex (MPFC) were identified based on the locations of voxels whose time courses 

had the highest correlations with the signal of the PCC seed region. Furthermore, being a 

central node in the network, PCC was expected to be negatively correlated with regions of the 

dorsal attention system including bilateral frontal eye field (FEF), bilateral intraparietal cortex 

(IPS) and bilateral middle temporal area (MT). The centers of these nodes were defined as the 

voxels whose time courses have the highest negative correlations with the reference time 

course of PCC seed. In the cases of primary motor, auditory and visual networks I relied on 

previous studies in determining the centers of these regions [18]. 

Finally, seed regions corresponding to each node were defined as all voxels within the 

10 mm radius of the previously obtained seed centers. Fig.14A illustrates the schematic 

locations of seed regions corresponding to the default mode network, dorsal attention system 

and reference networks. Fig.14B displays the way DMN was defined: peak voxels 

corresponding to its nodes were identified on the group level correlation map. Before 

computing correlation values, the data underwent a regression of 5 principal components 

specified in Section 5.4.2. Note that Fig.14B shows the peak voxels only schematically, 

because real peak voxels are in different slices of the image. The exact centers of the seed 

regions in MNI coordinates are listed in Table 1. 
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Figure 14. A: Schematic locations of seed regions in the default mode network, dorsal attention system and in 
the reference networks including motor, auditory and visual network. The exact locations are contained in Table 
1. B: Illustration of the node identification procedure. Group-level z correlation map is created with PCC seed 
region, and peak voxels are considered as nodes of the DMN network (LLP, RLP, PCC, MPFC). Note that peak 
voxels are schematically displayed in this figure, because real peak values are in different slices of the 
correlation map. 

Table 1. The centers of ROIs are listed with their abbreviation, laterality and MNI coordinates. 

Area Abbreviation L/R 
MNI coordinates 

X Y Z 

Posterior Cingulate Cortex PCC 
medialis 

(med) 
0 -53 26 

Lateral parietal cortex LP 
L -48 -66 32 

R 52 -60 28 

Medial prefrontal cortex MPFC med 2 62 4 

Frontal eye field FEF 
L -26 -2 58 

R 30 2 58 

Intraparietal cortex IPS 
L -40 -44 44 

R 36 -44 44 

Middle temporal area MT 
L -54 -58 -6 

R 56 -54 -4 

Motor cortex Mot 
L -36 -25 57 

R 36 -25 57 

Auditory cortex Aud 
L -43 -26 12 

R 43 -25 57 

Visual cortex Vis 
L -30 -88 0 

R 30 -88 0 
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5.4.2 Temporal processing steps 

Once the networks with corresponding nodes and the different metrics have been defined, the 

impact of various temporal preprocessing steps on the correlation strengths within and among 

the seed regions of these networks can be explored. I performed a variety of preprocessing 

strategies on the acquired resting-state dataset to systematically assess whether the given 

procedure maximized the correlation strengths within the signal networks and minimized 

them within the reference networks. After preprocessing, the mean signal was extracted from 

each of the ROIs of 10 mm radius listed in Table 1, and correlations within and between the 

specified networks were calculated to construct signal and noise metrics. 

  Ten (#0 - #9) different preprocessing strategies were tested and compared in the 

analysis. The details of each preprocessing strategy with the factors for which the data have 

been corrected are given in Table 2. Although these procedures were covered in Section 4.3, 

some methodological issues and data specific details were not discussed there. 

First, all of the preprocessing strategies were prepended by the spatial preprocessing 

procedures specified in Section 5.2, with the exception of the #0 strategy, where spatial 

smoothing was left out to explicitly analyze the correlations in the unsmoothed dataset. 

Second, voxel time courses were intensity-normalized to compensate for the substantial 

intensity differences between voxel time series caused by physical and physiological aspects 

of MRI scanning. However, this step is less of an importance in seed correlation analysis, 

because both GLM framework and the formula of correlation coefficient are not affected by 

the level of signal. The percent signal change was used for normalization that transforms each 

intensity value }� according to }�e = HvwJvxvx I ∙ 100, where }�e denotes the transformed intensity 

value, and }x the voxel’s mean time course. 

 

Table 2. Details of the preprocessing strategies. + refers to the application of the particular procedure. 

Preprocessing approach #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 

smoothing - + + + + + + + + + 

frequency band-pass filtering - - + + + + + + + + 

regression of motion parameters - - - + + + + + + + 

regression of mean WM, CSF signal - - - - + - - - - + 

regression of global signal - - - - - - - - - + 

number of regressed principal comp. 0 0 0 0 0 3 5 10 15 0 
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Principal component analysis of the extracted signal from the noise ROIs and multiple 

linear regression was performed using the CONN toolbox15 that runs under Matlab 

environment. Correlation maps created by this software were plotted by MRIcron. All 

regression procedures and band-pass filtering were performed voxel-wise. 

 Noise ROIs were created from the tissue probability maps thresholded at � > 0.5 and 

subsequently one-voxel eroded (see Fig.11) to avoid partial volume effects. Interestingly, the 

one-voxel erosion of the CSF restricts the noise ROI of CSF by far more than in the case of 

WM. While on average (¦©. ¥� ± �. £¨)% of the voxels for the WM survive the one-voxel 

erosion, this value is only (©. £¥ ± ¥. ©¢)% for the CSF. This is due to the fact that 

cerebrospinal fluid is distributed in thinner anatomical structures particularly around the 

cortical surface. These masks were applied to the unsmoothed dataset to extract mean signals 

as well as principal components. 

In order to minimize redundancies in the GLM model, CONN regresses out motion 

parameters (6 rigid-body motion parameters + backward derivatives) from the BOLD time 

series within WM and CSF masks before PCA decomposition is applied. This approach 

avoids that the same subspace is spanned by additional components generated by PCA. Also 

note that the regression of � principal components means the inclusion of the top � principal 

components arranged according to their variance as regressors. 

Detrending is implemented as part of multiple linear regression step by adding a linear 

trend as an additional regressor to the general linear model. 

Another methodological issue is the order of linear regression and frequency filtering. 

Hallquist et al. found that applying band-pass filtering to the signal time series before 

removing nuisance effects can lead to inappropriate control of physiological/movement 

effects [55]. Therefore, I opted for the reverse procedure, where regression was performed 

before band-pass filtering. 

 

5.4.3 Results 

After all the preprocessing was carried out, the mean correlations were computed within 

default mode network (DMN) and dorsal attention system (ATT) for serving as signal 

metrics, among reference regions (primary motor, visual, auditory cortex) as noise metric and 

among DMN and ATT as anticorrelation signal metric. Before averaging, correlation values 

were Fisher transformed to obtain   correlation values. Fig.15 displays voxel-wise group level 

                                                 
15 Software of Gabrieli Lab. McGovern Institute for Brain Research, Massachusetts Institute of Technology: 
    http://www.nitrc.org/projects/conn 
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  correlation maps with respect to the PCC seed region in 6 slices of the brain and across all 

the preprocessing approaches. These correlation maps were overlaid on a template anatomical 

image obtained from the standard library of MRIcroN. Positive and negative correlations were 

thresholded at 0.1 and -0.1, respectively. The influence of various preprocessing strategies on 

the sensitivity and specificity of signal metrics are plotted in Figure 16. The specificity is 

defined according to [43] as: 

[ = |°|J|°±²³||°|_|°±²³|     (34) 

where ´ denotes the signal metric and |´�QR| is the mean correlation among the reference 

networks (noise metric). Absolute values are necessary to obtain positive specificity values 

for the anticorrelation metric. Note that specificity of anticorrelation was only calculated if the 

absolute value of negative correlation exceeded the noise metric. 

 

 

Figure 15. Group-level voxel-wise   correlation maps with respect to PCC seed are displayed in 6 different 
slices (Z coordinates are given in MNI space) and across all preprocessing strategies. Color-coded correlations 
(positive values in red, negative values in blue) are overlaid on a standard anatomical volume. 
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Figure 16. A: Mean   correlation strengths within default mode network (DMN), dorsal attention system (ATT) 
as well as among reference regions (REF) and between DMN and ATT are plotted against the preprocessing 
strategies. B: Specificity of the mean correlation within DMN and ATT as well as between DMN and ATT are 
quantified for each preprocessing strategy. 

 

 



46 
 

  Figures 15 and 16 clearly demonstrate that preprocessing choices influence the 

magnitude of correlations. First, high correlations were present even when no preprocessing 

was applied. The topography of the DMN can be readily observed in Fig.15 (mainly in slices 

with Z-coordinates of 20 and 30 mm) in the unsmoothed dataset (#0), but there are a lot of 

non-specific correlations with respect to the PCC seed resulting in a low specificity of real 

correlations as can be seen in Fig.16B. This inherent low specificity in the seed correlation 

analysis indicates the need for adequate preprocessing. Also note that valid and meaningful 

correlations corresponding to LLP, RLP and MPFC were the highest in the unsmoothed 

dataset suggesting that the threshold can be raised above the level of nonspecific correlations 

to obtain the real topography of the default mode network. 

 The blurring effect of smoothing slightly expands the area of voxels exceeding the 

threshold of 0.1 (#1 in Fig.15). Smoothing has a minor effect on the sensitivity and specificity 

results, because the calculation of these values already involves signal averaging within ROIs 

making the additional spatial smoothing redundant. However, if small ROIs or even voxels 

are used to define nodes of networks, the effect of spatial smoothing can be higher. 

 Interestingly, the application of band-pass filtering has been found to substantially 

increase both specific and non-specific correlations. It may be caused by the exclusion of the 

high-frequency random signal components induced by thermal noise and it results in a further 

expansion of the correlated area with respect to PPC (#2 in Fig.15) as well as in an increase in 

the signal and noise metrics. However, since these metrics increase proportionally, the 

specificity of correlations remains approximately unchanged. 

 The regression of six motion parameters as well as their first derivatives (#3) does not 

make significant differences compared to #2. An interesting observation is that contrary to 

large parts of the WM, the ventricular system does not correlate with the PCC in the cases of 

#0 - #3, which is most probably caused by the low signal to noise ratio in CSF signals 

quantified in Section 5.3.1. 

Regression against the mean signals from the noise ROIs removed non-specific 

correlations to a large extent. Correlations of PCC with voxels within the noise ROIs are 

obviously eliminated, but false correlations with functionally non-related areas in GM are also 

suppressed resulting in a 1.5-2-fold increase in the specificity results. However, correlations 

within functional networks are also somewhat reduced reflected in lower sensitivity values in 

DMN and ATT networks. These observations can be attributed to the fact that coherent 

fluctuations present in the noise ROIs are also removed from the functional networks. 
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Regression of 3 principal components (#5) instead of the mean signal from noise ROIs 

provides better noise control; however, the correlation among the reference networks is still 

around 0.2. However, when even more principal components are regressed out (5, 10, 15 in 

the cases #6, #7, #8, respectively), it is further reduced reaching almost zero in #8. It suggests 

that removing higher number of PCA components is more effective in noise correction, since 

PCA components represent a more complex set of time series to characterize physiological 

effects that cannot be captured by a single temporal component. However, the more PCA 

components are regressed out, the more correlations reduce in DMN and ATT networks, 

which results in a saturation of positive correlations when regressing out 10 or more PCA 

components. It is due to the fact that regression against signals from noise ROIs always 

carries the risk of removing neural signal in functional networks, because neural related 

signals and PCA components from noise ROIs may share similar characteristics. It is also 

possible that noise ROIs overlap with functional networks in spite of one-voxel erosion. Even 

a small contamination of noise regressors with true neural induced signal may be sufficient to 

reduce specific correlations. 

Global signal regression (#9) provided very similar results to the case of #7. 

Application of this technique instead of aCompCor also increases the specificity results, but 

this approach is under debate for several reasons discussed in Section 4.3.3. Most notably, the 

global signal regressor is highly contaminated by the signals of functional networks. 

Note that robust, widespread anticorrelated networks (with respect to PCC) were only 

present after regression of at least 5 principal components or after global signal regression. 

Some papers argue that anticorrelated networks are artificially induced by global signal 

regression, but the fact that both aCompCor and global regression yielded anticorrelated 

networks of similar topography (see Fig.15) contradicts this argument. Negative correlations 

are significantly smaller in amplitude than positive ones with global signal regression 

producing the highest anticorrelations. It is not surprising as global signal regression shifts the 

correlation histogram towards negative values potentially introducing artificial negative 

correlations. In terms of specificity of negative correlations, cases #7 – #9 yielded similar 

results. 

In summary, adequate preprocessing greatly suppressed spurious correlations and 

preserved high correlations in DMN and ATT networks at the same time. Without performing 

any preprocessing, correlation maps were dominated by non-specific correlations and 

specificity of correlations within these networks was low. Subsequent preprocessing steps (#1 

- #7) steadily increased specificity of positive correlations until a saturation above #7. The 
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aCompCor approach as an alternative of global regression has proven to accurately describe 

physiological noise processes in gray matter and is able to reduce the confounding effect of 

noise. However, regression of too many PCA components is not beneficial because it also 

reduces the detection sensitivity of functional networks. Based on these results, regression of 

5 principal components (from now on referred to as aCompCor 5 approach) seems to be a 

good compromise between sensitivity and specificity of the true positive correlations, which 

is consistent with the findings of [46] and [47] who proposed regression of 5 and 6 

components, respectively. 

 

5.5 Effect of ROI sizes 

While performing seed-correlation analysis it is essential to ensure that seed voxels are chosen 

within a well-defined functional area and these voxels do not overlap with neighboring 

functional networks. Large ROIs carries the risk of incorporating multiple functional 

networks, while small ROIs are more susceptible to high spatial frequency signal variations 

due to the lack of signal averaging. 

In the previous section, signal metrics were calculated based on ROIs of 10 mm 

radius. Here, I performed the same computations using a variety of ROI sizes including 5, 10, 

15, 20 mm radius as well as single voxel seed (designated as 0 mm radius). The mean 

correlation coefficients within DMN and ATT as well as among these networks (DMN - 

ATT) in case of #6 preprocessing strategy can be seen in Figure 17. 

 
Figure 17. Mean correlation coefficients within DMN, ATT and between DMN-ATT networks in case of the 
“optimal” aCompCor 5 approach (#6) as a function of ROI size. 
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Using voxels as seeds have proven to be suboptimal in the detection of functional 

networks. Positive correlations increase with increasing ROIs and eventually saturate at a 

radius of 10 mm and higher. Furthermore, a great degradation can be observed in the 

detectability of anticorrelated networks with increasing ROI sizes. In summary, size of the 

ROI affects the output of seed-correlation analysis, and according to these results, a ROI 

radius of 10 mm seems to be optimal. 

 

5.6 Effect of residual motion 

Recently, several studies have demonstrated that motion-related effects are not effectively 

removed by commonly used preprocessing procedures. Power et al. showed that head motion 

during scans produces substantial changes in the intensity of the BOLD signals across the 

brain [4]. These intensity changes result from a variety of mechanisms discussed in Section 

4.1.2. and can cause systematic but spurious correlation structures throughout the brain. 

Specifically, spatial blurring due to head motion has been found to increase local, short-range 

correlation of the signal and decrease the strength of long-range connections with the 

exception of functionally coupled bilateral brain regions [3]. These results from the literature 

indicate that head motion significantly affects functional connectivity results including those 

obtained by SCA. Besides introducing individual changes in functional connectivity, head 

motion can also create spurious differences between subject groups due to the fact that 

different subject groups have different level of motion (for examples, patients move more 

than controls). 

 Following above considerations, I explored the effect of residual motion on the 

acquired resting-state dataset of 32 subjects. In Section 5.6.1, measures of head motion and 

signal intensity changes were computed and their relations were assessed. These metrics 

characterizing individual level of motion were used to form cohorts, among which group 

functional connectivity maps were created in Section 5.6.2 to illustrate how head motion 

might confound an analysis. In Section 5.6.3 the frame-discarding method “scrubbing” 

proposed by [4] is applied to the data to identify and remove motion-corrupted frames. 

 

5.6.1 Quantification of motion 

In order to quantify motion and possibly motion-related intensity changes, it is necessary to 

define metrics. These measures can be divided into summary measures that describe the 

whole 4D dataset and into framewise measures that characterize a single frame only. 
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Absolute displacements of each volume as compared to the previous volume were 

estimated based on the translational and rotational parameters obtained by the motion 

correction step (see Section 4.1.2). Rotational parameters were converted into displacements 

on the surface of the brain by modeling the brain as a sphere of 50 mm radius, which is 

approximately the mean distance between the cortex and the center of the head. Mean 

absolute displacement for each subject was also calculated by averaging absolute 

displacements over all the frames.  

Individual mean absolute displacements were used to divide the 32 subjects into 4 

groups of equal sizes designated as “low”, “lower middle”, ”higher middle” and “high” 

motion groups. Mean absolute displacements averaged within each group were (0.0536 ±0.0094 mm), (0.0756 ± 0.0089 mm), (0.098 ± 0.0063 mm) and (0.1595 ± 0.0487 mm), 

respectively. Note however, that the mean absolute displacement as a summary measure is not 

able to distinguish between qualitatively different types of subject movement. 

 To characterize the framewise change of BOLD signal across the brain, the time series 

of each voxel was differentiated (by backwards difference) and the resulting absolute signal 

intensity changes were averaged across the whole brain for each frame of data. Furthermore, 

mean tSNR was also used as a summary measure to indicate data quality. It was computed by 

averaging the voxel-wise tSNR within the brain mask for each subject.

The association between mean absolute 

displacement and mean tSNR was explored 

in Figure 18, where a strong inverse 

relation between these two measures was 

found consistent with [3]. It suggests that 

head motion reduces tSNR by introducing 

noise in the measurement. To explore 

which parts of the cortex are most 

susceptible to motion-induced noise, 

group-level contrast was created between 

the high and low motion group by 

subtracting the two group-averaged voxel-

wise tSNR from each other (Figure 19). 

 

 

Figure 18. Mean tSNR within the brain mask is 
plotted against the mean absolute displacement for 
each subject. 
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Figure 19. Group tSNR difference map projected onto the surface of a brain template. Areas of high positive 
(plotted by red) and negative (plotted by blued) differences between the high and low motion group are 
displayed. Note that there are virtually no areas with significantly higher tSNR in the high motion group.  

Fig.19 demonstrates that tSNR is generally lower in the high motion group and the greatest 

tSNR differences between the two groups are in the prefrontal cortex.  

The relation between head motion and BOLD signal changes in a single subject is 

demonstrated in Figure 20. Fig.20A shows the framewise absolute displacement as a function 

of time (9· = 2 �). While the subject was relatively still during most of the experiment, 

several peaks associated with high motion are visible throughout the data that can last even 

tens of seconds. Figure 20B,C plot the mean absolute intensity change within the brain mask 

before and after temporal preprocessing (aCompCor 5 approach). The unit of this measure is 

% as all voxel-wise BOLD signals are intensity normalized to percentage values (see Section 

5.4.2). 

It is evident that there is a clear correspondence between framewise displacement and 

signal intensity change, periods of high movement contain substantially changing signals. 

Although these plots refer to only one subject, similar patterns were found in other subjects, 

too. The magnitudes of these signal changes are too high to be caused by neuronal activity 

(e.g. motor related neural activity) suggesting that these peaks reflect in fact motion-related 

artifacts specified in Section 4.1.2. Note that data are contaminated with artifactual motion-

related noise even after performing temporal preprocessing including regression of motion 

parameters. The reason for the ineffectivity of motion parameter regression to remove motion 

effects may be that motion causes complex, non-linear signal changes that can also vary 

across the brain, which cannot be modeled by the simple motion parameter estimates. 
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Figure 20. A: Framewise absolute displacement in mm as a function of time. B: Mean absolute BOLD signal 
change in the unprocessed data over the course of the experiment. C: Mean absolute signal change after 
preprocessing the data using aCompCor 5 approach. 

 

5.6.2 Between-group connectivity differences 

As a demonstrative example how between-subject differences in head motion can affect 

functional connectivity, group difference correlation maps were constructed between groups 

defined in the previous section using PCC seed (MNI coordinates: 0, -53, 26). The 

correlations between the time courses of each voxel and the PCC seed were calculated on 

preprocessed data (aCompCor 5 approach). Individual correlation maps were averaged within 

each group and contrasts were formed by subtracting average correlation maps from each 

other. Such contrasts between high motion vs. low motion groups and between higher middle 

vs. lower middle motion groups are projected onto a brain template in Figure 21. Besides the 

contrast map (displayed in red), group-level16 correlation map (displayed in green) 

representing the DMN is also projected on the surface to make comparisons easier. 

                                                 
16 Group-level correlation map was computed by averaging all the 32 individual correlation maps. 
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Figure 21. Group difference functional connectivity maps (seed: PCC) between low and high as well as between 
lower middle and higher middle motion group are displayed in red. Group average correlation map is also 
overlaid onto the surface and is displayed in green. The overlap or high proximity of the two maps are marked by 
yellow circles. 

The mean correlations in the high motion group were found to be significantly lower 

in areas that closely resemble the DMN (lateral parietal lobes, medial prefrontal cortex). The 

high degree of overlap between the group-level DMN network and the group-level difference 

maps seen in Fig.21 emphasizes that correlations associated with PCC seed are mainly 

reduced in high motion subjects where high correlation strengths are originally expected. 

Furthermore, the higher middle motion group also shows decreased connectivity compared to 

lower middle m. g. in areas that are similar to the pattern of DMN. 

In summary, high group-level differences are present when the only known major 

difference between the groups is the level of head motion. Due to their similar structure to 

DMN they can be easily misinterpreted as neuronal effects. Since all subjects were clinically 

normal young adults, even higher differences are expected in patient groups who have 

significantly higher level of motion. Therefore, it is critical to consider the effect of head 

motion while interpreting group-level differences, because it may bias between-group studies 

in the direction of the hypothesized difference. 
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5.6.3 Scrubbing 

Given the functional connectivity differences head motion can produce, it is important to 

address residual motion artifacts in the signal on a case by case basis. One possible method to 

reduce residual motion effects is scrubbing first introduced in Power et al., 2012, [4]. 

Scrubbing attempts to identify and entirely remove frames that are irreversibly corrupted by 

motion artifacts. 

 In the first step a temporal mask for each subject was created using the framewise 

measures defined in Section 5.6.1: absolute displacement and mean absolute signal change 

across the brain. The idea behind applying simultaneously two indices as exclusion criteria 

was that although these two measures correlate to a high level (see Fig.20.), the threshold in 

the signal change may also remove frames that are corrupted by instabilities other than head 

motion. After studying the plots of all the subjects (an example can be seen in Fig.20.), 

threshold values were set to 0.25 mm for absolute displacement and 2.2 % for mean absolute 

signal change in the raw data. Temporal masks for each index and subject contained frames 

whose framewise measures exceeded these thresholds. Furthermore, temporal masks were 

augmented by also including frames 1 back and 1 forward from any frames already marked to 

correct for the temporal smoothness of the BOLD data and to allow for the re-establishment 

of the spin steady-state. Final temporal mask was created by taking the union of the two 

masks. The framewise measures of a subject (the same subject as in Fig.20) with the selected 

thresholds are displayed in Figure 22A and B, while Fig.22C shows the final temporal mask. 

Note that only those frames are marked whose indexes are well beyond the values found in 

still periods of the measurement. 

 Marked frames were removed after preprocessing, because temporal filtering cannot 

work properly on temporal discontinuous data. However, subsequent seed correlation analysis 

is thus performed on concatenated discontinuous data, but previous studies found no 

corresponding detrimental effects on functional connectivity [18]. The mean proportion of 

data removed from each subject was �¤. ¨§ %. Similar to Power et al. [4], I presented the 

requirement that at least 5 minutes of data must remain after scrubbing corresponding to an 

exclusion proportion of 42.31 %. Two subjects could not satisfy this requirement, they were 

excluded from all analysis in Sections 5.3-5.5. 
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.  

Figure 22. A: Framewise absolute displacement in mm as a function of time with the level of threshold at 0.22 
mm. B: Mean absolute BOLD signal change in the unprocessed data with a threshold of 2.2%. C: Final 
(augmented and united) temporal mask. 

 In order to test the ability of scrubbing to reduce residual motion artifacts, I created the 

same group-level contrast as in the previous section (Figure 23). Despite scrubbing, 

significant connectivity differences were found at similar locations as in Fig.21. It suggests 

that high group-level connectivity differences between groups with different level of motion 

still exist after scrubbing. There are several possible reasons scrubbing is not able to remove 

all motion-related signal. First, even frames with values below the thresholds contain motion-

induced signal, but further reducing the threshold is not beneficial because it would remove 

too much data. Second, applying band-pass filter on motion-corrupted data spreads the 

compromised signal into non-compromised volumes. However, based on the similar pattern 

of signal change before and after preprocessing (see Fig.20), this effect is expected to be 

minor. Third, general linear model is applied to all data including the motion-corrupted 

volumes, so high-motion periods may present outliers in the regressors also propagating to the 

parameter estimates and thus resulting in suboptimal performance of the multiple linear 

regression. 
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Figure 23. Group difference functional connectivity maps (seed: PCC) between low vs. high as well as between 
lower middle vs. higher middle motion groups obtained after scrubbing and displayed in red. Group average 
correlation map is also overlaid onto the surface and is displayed in green. The overlap or high proximity of the 
two maps are marked by yellow circles. 
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6.   An application of the method: Altered functional connectivity 
in patients with retrosplenial epilepsy 

Functional connectivity has been widely used to explore individual and group differences. 

Several reports indicate distinct changes in inter-regional functional connection strength in a 

variety of psychiatric and neurological disorders [15]. As an application of the optimized 

fMRI preprocessing, I investigated how retrosplenial epilepsy and subsequent tumor excision 

affects the functional connectome of the human brain. The retrosplenial area is an important 

hub in the functional architecture of the brain, because it partly overlaps with one of the main 

nodes of DMN comprising the posterior cingulate cortex and the precuneus. It was expected 

that disorder or removal of this region severely disrupts the functional connectome. The main 

question of interest was whether the functional connections of patients who have undergone 

brain surgery significantly differ from those of normal population. 

Data were collected from two patients (designated as Patient #1 and Patient #2) 10 and 

15 years after retrosplenial surgery, respectively. In both cases the surgery was performed to 

remove retrosplenial tumor that caused severe epileptic symptoms. Figure 24 illustrates on the 

patients’ anatomical images that the tumors were in fact in the area corresponding to DMN's 

posterior node as detected by group-level independent component analysis. The control group 

representing the normal population consisted of the 30 subjects described in Section 5.1 (2 

outliers excluded). 

 

 
Figure 24. Group-level default mode network shown by red overlaid onto the normalized anatomical image for 
each patient. In both cases the surgery (indicated by the yellow crosshair) was performed in the area of DMN. 
Although the location of the lesion is similar in both cases, the size of the lesion in Patient #2 is much larger than 
that in Patient #1. 
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 The two patients underwent the same resting-state fMRI acquisition protocol specified 

in Section 5.2. Standard spatial preprocessing (Section 5.2) was performed on the collected 

fMRI data. Subsequently, data were band-pass filtered between 0.01 Hz and 0.1 Hz, 

detrended and regressed for realignment parameters as well as 5-5 principal components 

extracted from the WM and CSF regions, since this procedure has proven to be optimal in 

terms of sensitivity and specificity of resting-state network detection (Section 5.4.3). 

 In order to assess the whole-brain functional connectivity, the brain was parcellated 

based on Brodmann’s atlas17 into 42 non-overlapping segments for each hemisphere and 

subject. As a regional estimator of the BOLD signal, mean signal was calculated from each of 

the 84 segments. Then, cross-correlation coefficients were computed among all the regions 

resulting in an 84 x 84 correlation matrix, in which the ���� element indicates the correlation 

coefficient between the �. and �. regions. Subsequently, one-sided t-test was performed for 

each matrix element to determine which pair of regions have significantly different 

correlation values compared to the control group. Regions that overlapped with the lesion 

were excluded from the analysis (1 region for Patient #1, 4 for Patient #2). Multiple 

comparisons correction was performed using the false discovery rate (FDR) approach with ¸ = 0.05, which in our case corresponded to � < 0.02 uncorrected level of significance, i.e. 

the chance of false positives causing significant effects is lower than 2%. In the assessment of 

individual connectivity differences described above, an individual’s test score is compared 

against a normative sample. To account for the small sample size, a modified t-test was used 

that treats the individual as a sample (º = 1): 

� = °LJ°Nxxx
»N|¼N½L¼N

      (35) 

where ´. is the Fisher transformed correlation of the patient, ´/xxx is the mean z-correlation of 

the normative sample, �/ is the standard deviation of the normative sample, and º/ is the 

sample size. As a result of the hypothesis test a 84 x 84 matrix was obtained for each patient, 

where the ���� element indicates whether the correlation between the �. and �. regions in the 

patient is significantly lower or higher than that in the normative sample. These matrices are 

displayed in Figure 25, where blue and red entries indicate significant increases and 

decreases, respectively. 

 

                                                 
17 Brodmann’s atlas of the CONN toolbox found at: conn\rois\BA.img. 
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Figure 25. Significance matrices for both patient can be seen on the left (blue entry: significantly low, red entry: 
significantly high correlation). The Brodmann areas with the most positive or negative entries are displayed on 
the standard brain surface. Red and blue contrasts represent the number of increased and decreased functional 
connections associated with the given Brodmann area. 

In general, both significance matrices were dominated by reduced correlations. Further, 

significance matrices reveal several Brodmann areas with highly reduced connection strengths 

(e.g. orbitofrontal cortices in Patient #1, left prefrontal cortex in Patient #2). Brodmann areas 

with more than 8 significantly reduced or increased functional connections are plotted onto a 

standard brain surface in Fig.25. In summary, the existence of several areas with reduced 

functional connections indicate disrupted connectivity in both subjects caused by either the 

consequences of the earlier epilepsy or by the tumor excision and resulting lesion itself. 
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7.  Summary and conclusions 

The goal of the thesis was to characterize the effect of noise in human resting-state fMRI 

datasets, and to subsequently find an optimal data processing strategy to mitigate these 

unwanted effects. First, I confirmed that resting-state datasets do in fact contain considerable 

fluctuations unrelated to neural processes that cause inflated estimates of functional 

connections. Then, I explored the ability of several typical preprocessing procedures to 

increase detection sensitivity and specificitiy of well-known resting-state networks. 

Processing steps examined were spatial smoothing, band-pass frequency filtering, regression 

of motion as well as regression of signals extracted from white matter and ventricles. 

The results of this thesis demonstrate that performing preprocessing on resting-state 

fMRI data is necessary to improve detection power of functional brain networks in the context 

of seed based correlation analysis. Specifically, regression of principal components from 

noise ROIs using anatomical component based noise correction approach could multiply the 

specificitiy of correlations in true resting-state networks. However, inclusion of too many 

principal components has not proven to be beneficial due to saturation of correlation 

specificity and associated reduction of sensitivity. Based on these results, regression of 5-5 

principal components from white matter and ventricles along with band-pass filtering and 

regression of motion is proposed to be included in the preprocessing stream. In summary, 

these findings confirm the potential of the aCompCor approach to effectively remove 

physiological and other noise sources and to serve as an alternative for global signal 

regression. 

I also demonstrated that motion-related fluctuations are not completely countered by 

these preprocessing procedures. Furthermore, the increasingly applied “scrubbing” procedure 

wasn’t able to remove all motion-contaminated data either. As a consequence, residual motion 

artifacts yielded substantial functional connectivity differences between groups with different 

levels of head motion. It is thus important to consider the confounding effect of noise when 

interpreting variation between groups and across individuals and further efforts to improve 

strategies for removing motion artifact is necessary. 

As an application of the optimal preprocessing pipeline I investigated the functional 

connectivity differences between clinically normal subjects and patients with removed 

retrosplenial tumor. Although the number of patients involved in the analysis was not 

sufficient to draw well-established conclusions, the results illustrate the potential value of 

resting-state fMRI to assess individual connectivity differences. 
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