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Kivonat

Diplomamunkámban iterat́ıv PET (Pozitron Emissziós Tomográfia) rekonstrukció opti-

malizálásával foglalkozom. Korábbi kutatások során [1]-ben vizsgálták a mintavételezési

bizonytalanságoknak a rekonstrukcióra kifejtett hatását. Az eredmények összehason-

ĺıthatóságáért a módszer-specifikus számolásaim Monte Carlo alapú rekonstrukciókra

fókuszálnak. Munkámban a rekonstrukció L2 hibájának minimalizálására koncentrálok.

Először részletesen bemutatom az egyszerűśıtett rendszert, amelyet a munkám során

alapul veszek. Ezután a rendszer viselkedését visszaadó matematikai modellt definiálok.

Ez a matematikai modell a későbbi elméleti okfejtések alapja. Megmutatom, hogy

tisztán elméleti eredmények levezetéséhez szükséges lenne pozit́ıv binomiális véletlen vál-

tozók reciprokának eloszlását kezelni. Ismert, hogy ennek a problémának nincs általános

megoldása és még egyszerűbb esetekben is komoly nehézségekkel jár. Ezen akadály megk-

erülésére a véletlen változó reciprokát normál eloszlással közeĺıtem.

A rendszer tulajdonságainak a rekonstrukció minőségére kifejtett hatásait is vizs-

gálom. Ennek érdekében kiszámı́tom a várható rekonstruált varianciát a rendszermátrix

elemeinek függvényében. Az eredményekből az látszik, hogy a rekonstrukció rendszer-

mátrixok széles skáláján optimális. Ebből következően az iterat́ıv rekonstrukció robusztus

képrekonstrukciós eljárás, amely nem érzékeny a rendszerparaméterek kis változásaira.

Ezután levezetek egy elméletileg optimális mintavételezést az előrevet́ıtés lépéséhez.

Az optimalizálást a teljes beütésszám varianciájára végzem, azonban ez nem feltétlenül

eredményez minimális rekonstruált varianciát. Ezt mutatja a 2× 2 rendszer viselkedését

vizsgáló numerikus szimuláció eredménye is. A tesztelés eredménye nem tudja

egyértelműen megadni, hogy az újonnan javasolt mintavételezés valóban optimális-e.

A visszavet́ıtés lépésére is meghatározom az optimális mintavételezést. Ebben a

számı́tásban már a rekonstruált kép várható négyzetes hibáját minimalizálom, ı́gy

ez nagyobb valósźınűséggel vezet valódi képminőség javuláshoz. Emellett, a javasolt

mintavételezés megvalóśıtásához szükség van a detektált jelek szórásának ismeretére, ame-

lynek meghatározása nem triviális feladat. Az általam ı́rt 2 × 2 iterat́ıv rekonstrukció

eredménye szerint az új mintavételezés valóban csökkenti a rekonstrukciós hiba mértékét.

Az előzetes numerikus tesztelés szerint az előrevet́ıtés lépéséhez levezetett

mintavételezés az egyenletes mintavételezésnél jobban, mı́g az aktivitás arányos verziónál

rosszabbul teljeśıt. Azonban a visszavet́ıtéshez meghatározott optimális mintavételezés

jobb képminőséget eredményez, mint az eddig használt módszerek.



Abstract

In my thesis I work on improving iterative PET (Positron Emission Tomography) image

reconstruction. Previous research in [1] examined the effect of sampling uncertainties on

reconstruction quality. My method-specific calculations also focus on MC based recon-

struction to allow for comparison of results. Most of my work focuses on minimizing L2

error of reconstructed activity concentrations.

First I give a detailed technical description of the slightly simplified system I consider

in my research. Afterwards, a mathematical model is defined that replicates system

behaviour. This mathematical model forms the basis of further theoretical inquires. I

show that purely theoretical results would require handling the inverse distribution of a

positive binomial random variable, which is known to be problematic even in the simplest

cases. To avoid this problem, the inverse distribution is approximated by a Gaussian.

The effect of system properties on overall reconstruction quality is also investigated.

This is done by determining the variation of expected reconstructed variance with system

matrix elements. It is found that reconstruction is optimal for a wide range of system

matrices, therefore iterative reconstruction is a robust approach that is not sensitive to

slight variations in system details.

I proceed to derive a theoretically optimal distribution of Monte Carlo particles be-

tween individual voxels in the forward projection step. Optimization is carried out with

respect to variance of total detection count, however this does not necessarily translate to

minimum reconstructed variance. This is illustrated by the numerical simulations I wrote

to test predictions of the model on 2 × 2 systems. Initial results can not differentiate

clearly between the currently used and newly proposed samplings.

I then derive a similar optimal sampling for the back projection step. This optimization

is performed over reconstructed variance, and is therefore a more promising candidate for

improving reconstruction quality. However, this requires access to variance of individual

LOR counts, which can be difficult to measure. I coded up an iterative reconstruction

for 2 × 2 systems. The results of numerical tests indicate that the theoretically optimal

sampling does reduce reconstruction error.

In conclusion, initial numerical testing shows that the derived forward projection sam-

pling performs better than simple uniform sampling, but slightly worse than the currently

used activity weighted method. However, simulated results also indicate that the proposed

back projection sampling offers an improvement over activity weighted reconstruction.
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Chapter 1

System Description

1.1 PET Imaging

In Positron Emission Tomography (or PET), a positron emitting isotope is introduced to

the examined system. This isotope emits positrons, which are annihilated upon coming

into contact with electrons of surrounding atoms. Such an annihilation produces two or

three photons depending on the spin state of the electron-positron system. However, three

photon decays are a factor of 370 less frequent when incident particles have small relative

velocity, as shown in [2]. This condition is satisfied in PET imaging, so three photon

emissions can be disregarded. This means that detected decays emit two photons, which

travel in opposite direction along a line. Once again, the non-collinearity of photons is

neglected, as this study focuses on statistical optimization of Monte Carlo sampling and

not particle transport. Emitted photon pairs are then subjected to coincidence detection

using an array of photon detectors.

The above described simplified setup can be broken down into two main parts. The

physical system itself has an activity distribution, which is the quantity PET imaging

seeks to recover. While the coincidence detected measurement data is taken in Line of

Response (LOR from now on) space. If physical space is discretized into voxels (volumetric

elements), then a simple mathematical model can be formulated that connects measured

data to real quantities.

A, the system matrix describes the behaviour of photon pairs emitted from the ob-

served system. The definition of the individual matrix elements can be written in a simple

form. Aij is the probability that a particle emitted by the j-th voxel is detected by the

i-th LOR. This mathematical description is illustrated in figure 1.1
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Figure 1.1: The real system is discretized into voxels (square grid in the centre), while the

imaging device consists of detector panels (sides of the regular polygon). Each detector

pair constitutes a LOR; and coincidence detection in the two detectors translates to a

particle detection in their LOR. Two LORs are shown: Li and Li′ . The system matrix

element Aij is the probability that a photon pair emitted from voxel Vj gets picked up by

LOR Li
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1.2 Virtual Measurement Setup

The simplest possible system that allows for a meaningful reconstruction can be used as

a starting point. This system consists of two voxels: VA and VB and two lines of response

(LOR from now on) L1 and L2. The voxels have activities CA and CB respectively

(however, to keep notation simple, from now on cA = CAt and cB = CBt decay counts

will be used instead, where t is measurement time).

Particle transport is governed by a known system matrix A, which in this simple case

is a 2x2 square matrix.

To properly define the system, a physical model is also needed. Once again, the

simplest possible one is sufficient. Each emission from a voxel produces exactly one

photon pair. Furthermore, a photon upon interacting with a detector is removed from

the system. Thus the possible outcomes of a photon pair emission are: the photons gets

detected by one of the LORs or they leave the system unobserved.

Our simple system has now been completely defined, and it is now possible to formulate

a mathematical description of its behaviour. A photon pair emitted from voxel j follows

a multinomial distribution: with probability A1j it is detected by L1, with probability A2j

it is picked up by L2 and with probability 1− (Aj1 + Aj2) it escapes the system without

detection. Therefore the whole system can be summarized in the following table:

VA Vb

L1 A11 A12

L2 A21 A22

∅ 1− (A11 + A21) 1− (A12 + A22)

(1.2.0.1)

This model neglects one important property of the system: the inherent stochastic

nature of particle emissions. This was left out to simplify the algebra involved in the

derivations.

1.3 Simulation of the System

Many iterative reconstruction methods have to simulate the system which gives rise to

the acquired data. To better understand the theoretical limits of such an approach, a

simulation that reproduces the behaviour of our virtual setup will be used as the basis of

our calculations. The implicitly assumed analogy between physical integrals and Monte

Carlo sampled quantities is shown in [3].
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The output of the measurement setup is the pair of LOR counts. Measured signals

from L1 and L2 will be denoted by S1 and S2 respectively.

Assuming that upon detection each photon pair gives rise to a unit strength detection

signal we can already write down the expected value (EV from now on) of our signals:

E

[(
S1

S2

)]
= A ·

(
cA

cB

)
(1.3.0.2)

However, that in itself is not enough to run a simulation. Let us have NA virtual

particles emitted from VA and NB particles from VB. To get the right expected LOR

counts, these have to have weights wA and wB. The expected LOR counts from such a

simulation are also simple to calculate:

E

[(
S1

S2

)]
= A ·

(
wANA

wBNB

)
(1.3.0.3)

The weights can be determined from the above equations, matching expected simulated

and measured LOR counts: (
cA

cB

)
=

(
NAwA

NBwB

)
(1.3.0.4)

and so wA = cA
NA

and wb = cB
NB

N = NA + NB, the total number of virtual particles in the simulation is a very

important quantity that affects the quality of sample statistics.
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Chapter 2

Problem Proposition

2.1 Overview

A general iterative reconstruction algorithm follows an iteration scheme such as the one

in [4]:

xk+1
j = xkj

1
l∑

s=1

Asj

l∑
i=1

Aij
ymi

n∑
t=1

Aitxkt

(2.1.0.1)

Where A is the system matrix (the first index runs over LORs and the second over

voxels). l is the number of LORs and n the number of voxels in the system. xkj denotes

the reconstructed activity in voxel m after k iterations. ymi is the measured count in LOR

i.

The above expression is identical to a Richardson-Lucy deconvolution [5], as the mea-

sured LOR counts are given by the real activity concentrations convolved with the system

matrix and some noise due to the statistical nature of nuclear decay.

The first major problem is the appearance of explicit system matrix elements in the

expression. This is a problem, because A can be very large, and thus impractical to

store. In a human PET system there can be 3 · 108 LORs and 104 voxels, as noted in [6].

The system matrix for such a device has 3 · 1012 elements. Such a large matrix would be

impractical to work with, so an alternative method to evaluate approximations to (2.1.0.1)

is important.

One iteration in the reconstruction process can be separated into two steps: forward

projection and backward projection. Forward projection is calculating expected LOR

counts based on the latest estimates of voxel activities. Backwards projection is comparing
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these results to measured LOR counts and correcting the reconstructed activity values

based on the differences in calculated and measured LOR counts.

In (2.1.0.1) the forward projection step is calculating

ysi =
n∑
t=1

Aitx
k
t (2.1.0.2)

While the back projection is evaluating the whole expression:

xk+1
j = xkj

l∑
i=1

Aij
l∑

s=1

Asj

ymi
ysi

(2.1.0.3)

To avoid the necessity of storing the entire system matrix, a Monte Carlo approach

may be used in both the forward and backwards projections. This is the method used in

[7]. By taking a closer look at the expressions themselves, it can be seen that the forward

projection poses a serious mathematical problem in a Monte Carlo simulation. In any

realistic system, there is a non-zero probability that a photon gets absorbed, or leaves

the system. This means that there is always a positive probability that a certain LOR

measures zero particles in a Monte-Carlo simulation even if the physically measured count

was non-zero. This means that the expression zi =
ymi
ysi

, which is a random variable, can

take on infinity as a value with positive probability. Such a random variable is impossible

to work with numerically, so a different approach is necessary to perform the forward

projection. It is interesting to note that the backwards projection never leads to this

problem, as in the expression
Aij
l∑

s=1
Asj

the denominator can only be zero if the numerator

is zero as well; this avoids infinite values, but still allows for 0
0

instances.

In short, the Monte-Carlo approach poses problems for both forward and back pro-

jections, but numerical treatment of the forward projection is more difficult due to the

appearance of singular values.

2.2 Analytical Results

There are two common methods to avoid infinite values in the forward projection. LORs

with zero simulated counts are either disregarded during the iteration step, or replaced by

values from the previous step. The two cases are very similar, in that it simply disregards

problematic results. The first approach simply replaces all singular zi values by zeros,

while the latter re-draws them according to the probability distribution until it finds a

non-singular value.
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If we consider a simple one voxel, one LOR system, some analytical results can be

derived concerning the distribution of zi values:

zi = ymi

(
1

ysi

)
= ymi

n∑
k=1

1

k

(
n

k

)
pk (1− p)n−k =

ymi np (1− p)n−1 pFq
(
{1, 1, 1− n} ; {2, 2} ;

p

p− 1

) (2.2.0.4)

where p is the detection probability, n is the total number of virtual particles and pFq

is the generalized hypergeometric function defined in [8].

A similar expression can be derived for z2i :

z2i = (ymi )2
(

1

ysi

)2

= (ymi )2
n∑
k=1

(
1

k

)2(
n

k

)
pk (1− p)n−k =

(ymi )2 np (1− p)n−1 pFq
(
{1, 1, 1, 1− n} ; {2, 2, 2} ;

p

p− 1

) (2.2.0.5)

Detailed derivation of the above results can be found in appendix A.2. From the

above two equations, the expected variance of zi could also be expressed using δ2zi =

z2i −(zi)
2. However, it is an unnecessarily complicated expression and therefore is omitted.

Analogous formulae can be derived for the case when infinite values are re-generated

instead of thrown away. These are almost identical to the above expressions and are

therefore omitted.

While the existence of an analytical expression for the mean and variance are positive

results, dealing with the generalized hypergeometric function is cumbersome and numeri-

cal evaluation is computationally intensive. Furthermore, even the simple two voxel, one

LOR system proves to be too complicated for similar calculations; I was not able to find

a closed analytical expression for mean and variance for such a setup. Negative moments

of positive Binomial distributions are required in many studies, however as noted in [9],

there are no known analytical methods for evaluating these moments.

In later chapters I will mostly deal with minimizing L2 errors, therefore the important

expression is not total variance itself, but its various partial derivatives with respect

to particle counts. However, these expressions are in no way simpler than the explicit

formulae given above.

In conclusion, obtaining pure analytical results for iterative PET reconstruction is an

unrealistic goal. Therefore either an approximation; or an alternative, more ad-hoc route

has to be considered.
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Figure 2.1: Comparison of probability distributions. The continuous line shows the normal

approximation, while the dotted lines show a normalized histogram of the true distribution

of values. In this case n = 50 and p = 1
3

2.3 Normal Approximation

In the previous section, it was shown that general, analytical results are unreasonably

difficult to obtain for the whole system.

While the distribution of zi values is difficult to handle, once the singularities are

removed, it has a finite mean and variance. There is a possibility of approximating such

a distribution with a normal distribution with the same mean and variance. Such an

approximation can work well in many cases, but can be very inaccurate in case of ill-

behaved distributions. Figure 2.1 shows this approximation in case of a 1x1 system. The

PDF of a normal distribution provides a reasonable fit to the idealized histogram, which

indicates that such an approximation could lead to useful results.
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Chapter 3

L2 Optimal System Matrix

The conclusion of the previous chapter was that it is very difficult to derive purely ana-

lytical results for an iterative reconstruction scheme. In this chapter we investigate the

effect of the system matrix on total reconstructed variance. If reconstructed variance is

a slow-varying function of individual system matrix elements, that means that iterative

reconstruction is a robust approach. However, if variance has a sharp minimum then

performance is heavily dependent on minor details of the system.

3.1 Introduction

As discussed in the previous chapter, the general form of an iterative reconstruction

algorithm is:

xk+1
j = xkj

1
l∑

s=1

Asj

l∑
i=1

Aij
ymi

n∑
t=1

Aitxkt

(3.1.0.1)

Where A is the system matrix (the first index runs over LORs and the second over

voxels). l is the number of LORs and n the number of voxels in the system. xkj denotes

the reconstructed activity in voxel m after k iterations. ymi is the measured count in LOR

i.

The above can be re-cast in a more convenient form:

xk+1
j = xkj

l∑
i=1

Aij
l∑

s=1

Asj

ymi
n∑
t=1

Aitxkt

= xkj

l∑
i=1

wijzi (3.1.0.2)
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where wij is the abstract weight factor which is given by the reduced system matrix

element:

wij =
Aij
l∑

s=1

Asj

(3.1.0.3)

and yi is the ratio of measured and expected counts in LOR i:

zi =
ymi

n∑
t=1

Aitxkt

(3.1.0.4)

The weights satisfy the following normalization property:

l∑
i=1

wij = 1 (3.1.0.5)

To achieve optimal reconstruction in L2 norm, the total variance reconstructed of

quantities has to be minimized. Assuming previous reconstructed values and abstract

weights to be constants without variance, total variance can be expressed as:

δ2xk+1
j =

(
xkj
)2 l∑

i=1

w2
ijδ

2zi (3.1.0.6)

We know that the distribution of yi can not be handled analytically, but we can assume

that the distribution has a known variance and proceed with that. From now on we will

use the values:

δ2zi = σ2
i (3.1.0.7)

So now we have

δ2xk+1
j =

(
xkj
)2 l∑

i=1

w2
ijσ

2
i (3.1.0.8)

This has to be minimal to achieve L2 optimal reconstruction.

There are two possible ways to proceed. Inter-voxel correlations can either be ignored

or taken into account. The total variance neglecting correlations is:

D2
n =

n∑
j=1

δ2xk+1
j =

n∑
j=1

((
xkj
)2 l∑

i=1

w2
ijσ

2
i

)
(3.1.0.9)

And the expression accounting for covariances is:
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D2
c = δ2

n∑
j=1

xk+1
j (3.1.0.10)

This expression can be refined using the following:

n∑
j=1

xk+1
j =

n∑
j=1

(
xkj

l∑
i=1

wijzi

)
=

l∑
i=1

(
zi

n∑
j=1

xkjwij

)
(3.1.0.11)

And so (3.1.0.12) becomes:

D2
c = δ2

l∑
i=1

(
zi

n∑
j=1

xkjwij

)
=

l∑
i=1

σ2
i

(
n∑
j=1

wijx
k
j

)2
 (3.1.0.12)
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3.2 Equations to Solve

Using the variance formulae from the previous section, it is possible to derive the necessary

equations that lead to minimal total variance.

The previously stated normalization condition has to be incorporated as a constraint:

l∑
i=1

wij = 1 (3.2.0.13)

Neglecting correlations, we have:

D2
n =

n∑
j=1

((
xkj
)2 l∑

i=1

w2
ijσ

2
i

)
(3.2.0.14)

Applying the method of Lagrange multipliers to the above equations, we can define a

function that can be minimized without constraints:

Gn =
n∑
j=1

((
xkj
)2 l∑

i=1

w2
ijσ

2
i

)
+

n∑
j=1

λj

(
1−

l∑
i=1

wij

)
(3.2.0.15)

And from this, minimizing with respect to every variable (λs, wqr) we get the following

system of equations:

∂λsGn = 0 = 1−
l∑

i=1

wis (3.2.0.16)

which of course is equivalent to the normalization constraint.

The partial derivatives with respect to weights yield:

∂wqrGn = 0 = 2wqr
(
xkr
)2
σ2
q − λr (3.2.0.17)

In a completely analogous manner, the results accounting for correlations can be found.

The function to be minimized:

Gc =
l∑

i=1

σ2
i

(
n∑
j=1

wijx
k
j

)2
+

n∑
j=1

λj

(
1−

l∑
i=1

wij

)
(3.2.0.18)

Once again we recover the normalization condition:

∂λsGc = 0 = 1−
l∑

i=1

wis (3.2.0.19)
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And the remaining equations are:

∂wqrGc = 0 = 2σ2
qx

k
r

(
n∑
t=1

wqtx
k
t

)
− λr (3.2.0.20)

3.3 2x2 Systems

Calculations for the 2x2 system are tractable, but still illustrate some important properties

of larger systems. Therefore a detailed solution will be included for such systems.

3.3.1 Neglecting Correlations

When correlations are neglected, we get the following system of equations from (3.2.0.15):
λ1

λ1

λ2

λ2

 =


2w11

(
xk1
)2
σ2
1

2w21

(
xk1
)2
σ2
2

2w12

(
xk2
)2
σ2
1

2w22

(
xk2
)2
σ2
2

 (3.3.1.1)

and the constraints: (
1

1

)
=

(
w11 + w21

w12 + w22

)
(3.3.1.2)

From (3.3.1.1), by adding σ2
2 times the first equation to σ2

1 times the second we get:

λ1
(
σ2
1 + σ2

2

)
= 2 (w11 + w21)

(
xk1
)2
σ2
1σ

2
2 (3.3.1.3)

applying the same the third and fourth equation yields:

λ2
(
σ2
1 + σ2

2

)
= 2 (w12 + w22)

(
xk2
)2
σ2
1σ

2
2 (3.3.1.4)

Substituting in from the constraints, the above two equations become:

(
λ1

λ2

)
=

 2
(
xk1
)2 1

1

σ21
+ 1

σ22

2
(
xk2
)2 1

1

σ21
+ 1

σ22

 (3.3.1.5)

And finally substituting back into (3.3.1.1), we get:
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
w11

w21

w12

w22

 =



1
σ2
1

1
1

σ21
+ 1

σ22

1
σ2
2

1
1

σ21
+ 1

σ22

1
σ2
1

1
1

σ21
+ 1

σ22

1
σ2
2

1
1

σ21
+ 1

σ22


(3.3.1.6)

3.3.2 Including Correlations

(3.2.0.18) gives the following equations:
λ1

λ1

λ2

λ2

 =


2xk1σ

2
1

(
xk1w11 + xk2w12

)
2xk1σ

2
2

(
xk1w21 + xk2w22

)
2xk2σ

2
1

(
xk1w11 + xk2w12

)
2xk2σ

2
2

(
xk1w21 + xk2w22

)

 (3.3.2.1)

and constraints: (
1

1

)
=

(
w11 + w21

w12 + w22

)
(3.3.2.2)

From the first two equations in (3.3.2.1), we get:

σ2
1

(
xk1w11 + xk2w12

)
= σ2

2

(
xk1w21 + xk2w22

)
(3.3.2.3)

Substituting this result into the third equations yields:

λ2 = 2xk2σ
2
2

(
xk1w21 + xk2w22

)
(3.3.2.4)

which is the fourth equations itself. This means that the system of equations is redun-

dant and thus does not have a unique solution. This degeneracy is further discussed in

the next section. Still, we can go a bit further. Substituting the constraints into (3.3.2.3)

we get:

σ2
1

(
xk1w11 + xk2w12

)
= σ2

2

(
xk1 (1− w11) + xk2 (1− w12)

)
(3.3.2.5)

which can be rearranged to yield:

xk1w11 + xk2w12 =
1

σ2
1

xk1 + xk2
1
σ2
1

+ 1
σ2
2

(3.3.2.6)

this is the equation of a straight line in w11 and w12.
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3.4 Larger Systems

The general solution for n× l systems is given here.

3.4.1 Neglecting Correlations

Based on the results from the 2x2 system, it is relatively simple to guess the general

solution:

λr = 2
(
xkr
)2 1

l∑
t=1

1
σ2
t

(3.4.1.1)

and

wqr =

1
σ2
q

l∑
t=1

1
σ2
t

(3.4.1.2)

These weights trivially satisfy the normalization constraint (3.2.0.13), and the follow-

ing equations as well:

∂wqrGn = 0 = 2wqr
(
xkr
)2
σ2
q − λr (3.4.1.3)

Therefore the initial guesses must coincide with the solution. It is important that the

numerical evaluation of the solution is also feasible. It can be performed without extensive

CPU or memory cost if the common term
l∑

t=1

1
σ2
t

is calculated and stored in advance.

This provides a way to estimate the difficulty of reconstruction for the particular system

considered.

3.4.2 Including Correlations

From subsection 3.2, we have the normalization (3.2.0.13) and

∂wqrGc = 0 = 2σ2
qx

k
r

(
n∑
t=1

wqtx
k
t

)
− λr (3.4.2.1)

the above can be re-arranged to read:

λr
σ2
q

= 2xkr

(
n∑
t=1

wqtx
k
t

)
(3.4.2.2)
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summing over all LORs gives:

l∑
q=1

λr
σ2
q

=
l∑

q=1

(
2xkr

(
n∑
t=1

wqtx
k
t

))
= 2xkr

n∑
t=1

(
xkt

l∑
q=1

wqt

)
= 2xkr

n∑
t=1

xkt (3.4.2.3)

where the last equation follows from the normalization condition. The above can be

re-cast into:

λr = 2xkr
1
l∑

q=1

1
σ2
q

n∑
t=1

xkt (3.4.2.4)

Substituting this into (3.4.2.1) we get:

2σ2
qx

k
r

(
n∑
t=1

wqtx
k
t

)
= 2xkr

1
l∑

q=1

1
σ2
q

n∑
t=1

xkt (3.4.2.5)

simplifying leads to:

n∑
t=1

wqtx
k
t =

1

σ2
q

1
l∑

s=1

1
σ2
s

n∑
t=1

xkt (3.4.2.6)

Together equations (3.4.2.2) and (3.4.2.6) are equivalent to (3.4.2.1), therefore this is

all we can determine about the position of the minimum if correlations are included. This

means that the minimum is a multi-dimensional surface, therefore the effect of individual

system matrix elements on total reconstructed variance is relatively small. This is an

important theoretical result concerning iterative reconstruction schemes.

Results derived neglecting and including correlations differ greatly. This discrepancy

demonstrates that correlations between individual LOR counts have a significant impact

on variances. Therefore, neglecting these correlations could lead to false results and

improper optimizations.

3.5 2x2 Simulation Results

A simulation was used to check the theoretical results described in this chapter. It deter-

mined the variance of a weighted sum of two normally distributed random variables based

on the weights used. For the depicted results, 50 divisions were made in both w11 and w12.

Each point on the graph was calculated as the sample variance of 100000 individual runs
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(random numbers), and the following values were used for σ1, σ2, x
k
1, x

k
2 in turn: 4, 5, 3, 2.

The results are shown on figures 3.1 to 3.4.
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Figure 3.1: Total variance neglecting correlations as a function of reduced system ma-

trix elements. As predicted by previous calculations, there appears to be a well-defined

minimum.
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Figure 3.2: Total variance including correlations as a function of reduced system matrix

elements. As predicted by theory, the true minimum is degenerate, indicating that a wide

range of system matrices allow for L2 optimal reconstruction. In agreement with (3.3.2.6),

the minimum follows a straight line.
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Figure 3.3: Relative difference between simulation and theoretical value; correlations are

neglected. The plot shows that there are no noticeable systematic differences between

simulated and calculated results.
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Figure 3.4: Relative difference between simulation and theoretical value; correlations are

included. The plot shows that there are no noticeable systematic differences between

simulated and calculated results.
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Chapter 4

Optimizing Forward Projection for

2× 2 Systems

While results discussed in the previous chapter are interesting, they do not help in building

a better reconstruction algorithm. It was demonstrated in chapter 2 that the main source

of mathematical difficulties is the forward-projection step.

When the system matrix can not be stored in memory, Monte Carlo simulations are

used to approximate LOR counts. These counts are then used to correct voxel activity

estimates. This is a crucial step in the reconstruction process, and is therefore a good

candidate for optimization. In the following two chapters I will outline a computationally

feasible method for ensuring minimal variance of simulated LOR counts.

Most of the following results will concern true variances, but Monte Carlo variances

for the test system can be useful for simulation purposes. These results can be found in

appendix A.1.

4.1 Variances

4.1.1 Single LOR Variance

S1 is the number of photon pairs detected in L1. It consists of two parts, photons arriving

from voxel VA and those from VB. Denoting the number of detected particle pairs from

VA by i and the number from VB by j, we can write:

S1(i, j) = wAi+ wBj (4.1.1.1)

To determine the expected value, the probability of detecting i and j particle pairs



VARIANCES 22

from VA and VB respectively is also necessary. The behaviour of particles emitted from a

specific voxel (eg. detected by D1 or leaving the system) are determined by a multinomial

distribution dependent on the system matrix A. Since particle emissions in VA and VB

are independent, the overall probability of the pair (i, j) is simply the product of two

binomial distributions.

P (#VA → L1 = i,#VB → L1 = j) = P (#VA → L1 = i) · P (#VB → L1 = j) =

=

((
NA

i

)
Ai11(1− A11)

NA−i
)
·
((

NB

j

)
Aj12(1− A12)

NB−j
)

(4.1.1.2)

Variance can be calculated according to its definition:

δ2S1 = S2
1 − S1

2
(4.1.1.3)

S1 is known, however to determine S2
1 , the following sum has to be calculated:

S2
1 =

NA∑
i=0

NB∑
j=0

(wAi+ wBj)
2

((
NA

i

)
Ai11(1− A11)

NA−i
)
·
((

NB

j

)
Aj12(1− A12)

NB−j
)

(4.1.1.4)

While it is possible to evaluate the above sum by purely algebraic means, a simple

statistical argument can be used instead to quickly find the variance.

S1 is the weighted sum of random variables drawn from two independent binomial

distributions, thus it is a random variable from the distribution S1 given by:

S1 = wAB1A + wBB1B (4.1.1.5)

where B1A ∼ B(NA, A11), B1B ∼ B(NB, A12) and B(N, p) denotes a binomial distri-

bution with N trials and probability p. From here, evaluating EV and variance of S1
becomes trivial:

E[S1] = wAE[B(NA, A11)] + wBE[B(NB, A12)] = wANAA11 + wBNBA12 (4.1.1.6)

and

D2[S1] = w2
AD2[B(NA, A11)]+w

2
BD2[B(NB, A12)] = w2

ANAA11(1−A11)+w2
BNBA12(1−A12)

(4.1.1.7)
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which is the variance of S1.

By the same argument and calculations, the expected variance of S2 is:

δ2S2 = D2[S2] = w2
ANAA21(1− A21) + w2

BNBA22(1− A22) (4.1.1.8)

4.1.2 Covariance

Calculating the covariance between S1 and S2 is similar to calculating individual variances.

Definitions of important quantities: i1 is the number of photon pairs detected by L1 from

VA, j1: particle pairs from VB detected by L1. And similarly i2: particle pairs from VA to

L2 and j2: photon pairs from VB to L2

The definition of the covariance:

δ2S1S2 = S1S2 − S1 · S2 (4.1.2.1)

Since particles from VA and VB are independent, we can write the probability mass

function as:

P (#VA → L1 = i1,#VA → L2 = i2,#VB → L1 = j1,#VB → L1 = j2) =

P (#VA → L1 = i1,#VA → L2 = i2) · P (#VB → L1 = j1,#VB → L1 = j2)
(4.1.2.2)

Knowing that photon pairs emitted from a voxel follow a multinomial distribution, we

can write:

P (#VA → L1 = i1,#VA → L2 = i2) =

NA!

i1!i2!(NA − i1 − i2)!
Ai111A

i2
21 (1− (A11 + A21))

NA−i1−i2 = M (A11, A21, NA, i1, i2)
(4.1.2.3)

and

P (#VB → L1 = j1,#VB → L2 = j2) =

NB!

j1!j2!(NB − j1 − j2)!
Aj112A

j2
22 (1− (A12 + A22))

NB−j1−j2 = M (A12, A22, NB, j1, j2)

(4.1.2.4)

Here M(x1, x2, N, p1, p2) denotes the probability mass function of a multinomial dis-

tribution with three outcomes, arguments related to the third bin have been dropped

without loss of generality. Since S1 and S2 are known, only S1S2 has to be determined.

From the above definitions:
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S1S2 = (wAi1 + wBj1)(wAi2 + wBj2) (4.1.2.5)

and so:

S1S2 =

NA∑
i1=0

NA−i1∑
i2=0

NB∑
j1=0

NB−j1∑
j2=0

(wAi1+wBj1)(wAi2+wBj2)M (A11, A21, NA, i1, i2) M (A12, A22, NB, j1, j2)

(4.1.2.6)

Once again it is possible to evaluate the sum relying on algebraic means, but there is

a simpler way using certain results from probability theory. As in the previous section,

the distributions of S1 and S2 can be written as:

S1 = wAB1A + wBB1B (4.1.2.7)

and

S2 = wAB2A + wBB2B (4.1.2.8)

where B1A ∼ B(NA, A11), B1B ∼ B(NB, A12), B2A ∼ B(NA, A21), B2B ∼ B(NB, A22)

and B(N, p) denotes a binomial distribution with N trials and probability p.

Using this formulation, the covariance in question can be written:

δ2S1S2 = w2
AD2[B1A,B2A] + w2

BD2[B1B,B2B] + wAwB
(
D2[B1A,B2B] + D2[B1B,B2A]

)
(4.1.2.9)

Distributions that belong to different voxels are independent, but those that carry the

same voxel index are correlated. Using the known covariance matrix of the multinomial

distribution (off diagonal elements are of the form −Npipj, as in [10]) the covariance can

be evaluated:

δ2S1S2 = w2
AD2[B1A,B2A] +w2

BD2[B1B,B2B] = −w2
ANAA11A21−w2

BNBA12A22 (4.1.2.10)

4.2 Total Signal Variance

Our signal is S1 + S2, therefore the total signal variance is given by:

δ2(S1 + S2) = δ2S1 + δ2S2 + 2δ2S1S2 (4.2.0.11)
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Substituting in from equations (4.1.1.7), (4.1.1.8) and (4.1.2.10) we get:

δ2(S1 + S2) = w2
ANAA11(1− A11) + w2

BNBA12(1− A12)+

w2
ANAA21(1− A21) + w2

BNBA22(1− A22)− 2
(
w2
ANAA11A21 + w2

BNBA12A22

) (4.2.0.12)

After some re-arrangement, the above can be cast in the form:

δ2(S1 + S2) = w2
ANA (1− (A11 + A21)) (A11 + A21) + w2

BNB (1− (A12 + A22)) (A12 + A22)

(4.2.0.13)

This can be re-written in a more convenient form:

δ2(S1 + S2) = w2
ANA (1− PA)PA + w2

BNB (1− PB)PB (4.2.0.14)

where PA = A11 + A21 is the probability that a photon pair emitted from voxel VA

gets picked up by one of the LORs and likewise PB = A12 +A22 is the probability that a

particle pair from VB gets picked up.

4.3 Alternative Derivation

While the above derivation for total measured variance is sound and natural in a sense, it

is complicated an unfeasible to apply for larger systems. Therefore it is important to have

an alternative solution that is easier to generalize. To this end, let us think of the total

measured signal in a different way. While it is apparent that the total measured signal is

the sum of all individual LOR counts, it can also be calculated by summing contributions

from individual voxels. Once again denoting the number of virtual particle pairs going

from VA to L1 as i1, from VB to L1: j1, VA to L2: i2, VB to L2: j2

S1+S2 = (wAi1 + wBj1)+(wAi2 + wBj2) = wA(i1+i2)+wB(j1+j2) = SA+SB (4.3.0.15)

where SA and SB are the total LOR counts caused by the individual voxels (ie. SA is

the total signal that would be observed if VB was completely removed from the system).

SA and SB are much simpler to handle than S1 and S2 owing to their simpler distribu-

tions. SA, the distribution from which SA is drawn, is a weighted sum of two independent

binomial distributions, as in (4.1.2.7) and (4.1.2.8) :
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SA = wAB1A+wAB2A = wA (B(NA, A11) + B(NA, A21)) = wAB(NA, A11+A21) (4.3.0.16)

The above result is also easy to derive from the system itself. A virtual photon pair

from VA is either detected by one of the LORs and results in a wA strength measured

signal, or escapes the system. Therefore in terms of total measured signal, the only

relevant information is whether the particles get detected or not. Thus we can write:

SA = wAB(NA, PA) (4.3.0.17)

This is exactly the same as the above result. Similarly we get:

SB = wBB(NB, PB) (4.3.0.18)

The variance of the binomial distribution D2[B(N, p)] = Np(1 − p) as in [10], is well

known and using this, we can write:

D2[SA] = w2
AD2[B(NA, PA)] = w2

ANAPA(1− PA) (4.3.0.19)

and

D2[SB] = w2
BD2[B(NB, PB)] = w2

BNBPB(1− PB) (4.3.0.20)

Since decays and subsequent particle paths in different voxels are independent of one

another, SA and SB are also independent. Since S1 + S2 = SA + SB, we can write the

total variance as:

δ2(S1 + S2) = δ2(SA + SB) = D2[SA] + D2[SB] = w2
ANAPA(1− PA) + w2

BNBPB(1− PB)

(4.3.0.21)

which is exactly what we had before.

4.4 Minimum Total Variance

Previously we have shown that total variance of the LOR counts is:

δ2(S1 + S2) = w2
ANA (1− PA)PA + w2

BNB (1− PB)PB (4.4.0.22)
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NA and wA are not independent quantities, as demonstrated by (1.3.0.4). Minimizing

total variance is easier if the equation is written in terms of independent quantities, so

substituting in from (1.3.0.4), we get:

δ2(S1 + S2) =
c2A
NA

(1− PA)PA +
c2B
NB

(1− PB)PB (4.4.0.23)

While NA and NB can be varied independently, to get meaningful minimization results

N = NA +NB should be kept constant. The method of Lagrange multipliers can be used

to incorporate all of the necessary constraints in the minimization problem:

~0 = ∇|NA=N ′
A,NB=N ′

B

(
c2A
NA

(1− PA)PA +
c2B
NB

(1− PB)PB − λ (N − (NA +NB))

)
(4.4.0.24)

Variables of the gradient are NA, NB, λ, where λ is the Lagrange multiplier itself and

N ′A, N
′
B is the place of the minimum. Evaluating the derivatives yields:

0

0

0

 =


λ− c2A

N ′2
A
PA(1− PA)

λ− c2B
N ′2
B
PB(1− PB)

N − (N ′A +N ′B)

 (4.4.0.25)

The above equations can be solved to find N ′A, which minimizes total variance:

N ′A = N
1

1 + cB
cA

√
PB(1−PB)
PA(1−PA)

(4.4.0.26)

However, it might be more convenient, to simply rearrange the equations into a sym-

metrical form:

N ′A
cA
√
PA(1− PA)

=
N ′B

cB
√
PB(1− PB)

(4.4.0.27)

and keep the constraint N = N ′A + N ′B in mind. This solution minimizes variance by

defining a simple and symmetrical weighting for the number of virtual particles originating

from individual voxels.
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Chapter 5

Optimizing Forward Projection in a

General System

5.1 Total Variance

Real imaging systems have more than two LORs and voxels. Let us consider a sys-

tem of n voxels: V1, V2, . . . , Vn and l LORs: L1, L2, . . . , Ll, whose measured signals are

S1, S2, . . . , Sl. Using notation similar to that applied in the 2×2 system, the total number

of decays in the individual voxels are: c1, c2, . . . , cn. The number of virtual photon pairs

started from them are: N1, N2, . . . , Nn and their weights are w1, w2, . . . , wn. Analogous

to (1.3.0.4) these are related by:

ci = Niwi∀i ∈ [1, . . . , n] (5.1.0.1)

Elements of the system matrix A are defined as follows: Aij is the probability that a

particle from voxel Vj gets picked up by LOR Li.

The total measured LOR count can once again be written as:

ST =
l∑

i=1

Si (5.1.0.2)

And defining the total signal contributions from the individual voxels as SVi (analogous

to SA and SB in (4.3.0.15)), the above can be expressed as:

ST =
l∑

i=1

Si =
n∑
i=1

SVi (5.1.0.3)
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we know that SVi are independent and also that they are binomially distributed as in

(4.3.0.17):

SVi ∼ SVi = wiB(Ni, Pi) (5.1.0.4)

where Pi is the probability that a virtual particle starting from Vi get detected by one

of the LORs. This means that the variances of voxel contributions are given by:

D2[SVi ] = w2
iNiPi(1− Pi) (5.1.0.5)

From the definition of the system matrix Pi values can be calculated as:

Pi =
l∑

j=1

Aji (5.1.0.6)

using this and independence, we can already write down the total variance:

δ2ST =
n∑
i=1

D2[SVi ] =
n∑
i=1

w2
iNiPi(1− Pi) (5.1.0.7)

5.2 Minimum Variance

We know that total variance of LOR counts in a general system is given by:

δ2ST =
n∑
i=1

D2[SVi ] =
n∑
i=1

w2
iNiPi(1− Pi) (5.2.0.8)

If we substitute in wi = ci
Ni

, we get:

δ2ST =
n∑
i=1

c2i
Ni

Pi(1− Pi) (5.2.0.9)

this is the expression we aim to minimize. As before, the total particle countN =
n∑
i=1

Ni

should be kept constant. Using Lagrange multipliers, the minimization problem can be

formulated as:

~0 = ∇|Ni=N ′
i

(
−λ

(
N −

n∑
i=1

Ni

)
+

n∑
i=1

c2i
Ni

(1− Pi)Pi

)
(5.2.0.10)

Evaluating the expression at the individual indices gives:
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0 = λ− c2i
N ′2i

(1− Pi)Pi (5.2.0.11)

substituting in from the equation for index i into the one for index j, we get:

c2i
N ′2
i

(1− Pi)Pi =
c2j
N ′2
j

(1− Pj)Pj ∀i, j ∈ [1, . . . , n] (5.2.0.12)

rearranging the above equation leads to:

N ′
i

ci
√

(1−Pi)Pi
=

N ′
j

cj
√

(1−Pj)Pj
∀i, j ∈ [1, . . . , n] (5.2.0.13)

which means that the distribution of virtual particle pairs which minimizes total vari-

ance in the forward projection is given by:

N ′i = N
ci
√
Pi(1− Pi)

n∑
j=1

cj
√
Pj(1− Pj)

(5.2.0.14)
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Chapter 6

Forward Projection Simulation

A simulation was written to test the theoretical results. It uses a setup identical to the

one introduced in section 1.2. It consists of two voxels and two LORs. The voxels emit a

given number of virtual particles that have weights defined in (1.3.0.4). Subsequent fates

of said particles are determined by random samples drawn from a multinomial distribution

characterized by the system matrix.

Simulation results were compared to calculated variance values. Both cases, neglected

and included LOR correlations, were tested. Simulation results and comparisons to the-

oretical values are shown on figures 6.1 and 6.2.
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6.1 Simulation Results
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Figure 6.1: Linear plot of variance results. It is clear that simulated and calculated

results accounting for correlations are in agreement. Neglecting correlations causes a

slight deviation from simulated values.
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Figure 6.2: Log-linear plot of variance results. It is clear that simulated and calculated

results accounting for correlations are in agreement. Neglecting correlations causes a slight

deviation from simulated values.
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6.2 Effect on Measured Signal

While the total variance of the forward projection step is an important measure, it is not

what actually affects the quality of reconstruction. The quantity that has to carry low

variance is
ymi
ysi

, the ratio of measured and simulated LOR counts. Several simulations were

run to determine the effect of different samplings on this quantity. The measured values

were replaced with true EVs (this doesn’t affect the behaviour of different samplings).

Results are shown in figure 6.3 and 6.4. The conclusion is that neither sampling is obvi-

ously closer to the true minimum than the others. Depending on system specifics, relative

performance of the three tested samplings (uniform, activity weighted and theoretically

optimal) vary greatly. To properly compare their performance, a whole iterative recon-

struction is needed, such a comparison can be found in chapter 8. The fact that optimal

total forward projection variance does not immediately translate to better reconstruction

is in agreement with [1]. According to their findings, relative variance of individual LOR

counts is more relevant to reconstruction quality.
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Figure 6.3: Total variance of the ratio of measured and simulated LOR counts. Red

markers show simulation results, while vertical lines show what portion of all virtual

particles the different samplings appoint to voxel A. System matrix: [0.1, 0.04; 0.4, 0.05],

voxel activities: [1, 12].
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Figure 6.4: Total variance of the ratio of measured and simulated LOR counts. Red

markers show simulation results, while vertical lines show what portion of all virtual

particles the different samplings appoint to voxel A. System matrix: [0.1, 0.45; 0.15, 0.5],

voxel activities: [1, 12].
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Chapter 7

Optimizing Backward Projection

After discussing the forward projection step, it is worthwhile to analyze backward projec-

tion as well.

7.1 Introduction

To choose an approach for optimization, it is important to understand exactly how the

system works. The back projection step uses the formula (3.1.0.2):

xk+1
j = xkj

l∑
i=1

Aij
l∑

s=1

Asj

ymi
n∑
t=1

Aitxkt

= xkj

l∑
i=1

wijzi (7.1.0.1)

where wij are the reduced system matrix elements and zi are the ratios of measured

and simulated LOR counts. While the system matrix elements are not known (the matrix

is too large to store in memory), they can be simulated during reconstruction to evaluate

the above expression. The way this is done is that a particle transport simulation is run

which chooses LOR i with probability wij. The indicator variable ζj is the index of the

particular LOR that picked up the photon pair. To properly approximate the above sum,

multiple particle transport simulations are needed. If Kj is the sample size, then

ζjm, 1 ≤ m ≤ Kj (7.1.0.2)

are the indicator variables, which are multinomially distributed with probabilities wij

and sample size Kj. This sampling is used in [7] with activity weighted Kj values.

Now, the Monte Carlo estimate for the reconstructed voxel count can be written as:
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x̂j
k+1 = x̂j

k 1

Kj

Kj∑
m=1

zζjm (7.1.0.3)

To proceed further, information about the distribution of zi is needed. Like before,

we can assume that it is a normal random variable with mean µi and variance σ2
i , or

zi ∼ N (µi, σ
2
i ). If we denote the probability density function by fi(x), then the PDF of

zζjm is given by:

fζjm(x) =
l∑

i=1

wijfi(x) (7.1.0.4)

(the individual PDF-s have to be weighted by the probability that they are chosen in

any one trial). The expected value can then be expressed as:

Mj = E
[
fζjm(x)

]
=

l∑
i=1

wijE [fi(x)] =
l∑

i=1

wijµi (7.1.0.5)

The above shows that the EV of the above MC procedure is exactly the deterministic

result (3.1.0.2), therefore it is an unbiased estimator for the iterative reconstruction step.

Determining the variance of zζjm is also possible.

d2j = D2
[
fζjm(x)

]
=

∞∫
−∞

(x−Mj)
2 fζjm(x)dx =

l∑
i=1

wij

∞∫
−∞

(x−Mj)
2 fi(x)dx (7.1.0.6)

The second non-central moment of a distribution can be calculated analytically (see

appendix A.3, and (A.3.0.22) in particular). So the problematic term on the left becomes:

∞∫
−∞

(x−Mj)
2 fi(x)dx = σ2

i + (µi −Mj)
2 (7.1.0.7)

and so the variance reads:

d2j =
l∑

i=1

wij
(
σ2
i + (µi −Mj)

2) (7.1.0.8)

Since the reconstructed activity is calculated from the average of Kj independent

identically distributed (IID) random variables, the variance is reduced by a factor of Kj,

so the variance of the reconstructed activity can be written as:

D2
j =

(
xkj
)2 1

Kj

l∑
i=1

wij
(
σ2
i + (µi −Mj)

2) (7.1.0.9)
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7.2 Optimal Biased Probabilities

A possible method for reducing variance, while keeping the EV constant is to introduce

a bias in the selection probabilities. Instead of using the natural wij values, we can

opt to use a selection method that has probabilities Pij. These still have to satisfy the

normalization:

l∑
i=1

Pij = 1 (7.2.0.10)

otherwise they would not define proper multinomial distributions. Furthermore, the

change in probabilities has to be compensated for by introducing weight factors that

multiply the zi values. Denoting these weights by qij and the new indicators by ξjm, the

new EV is is given by:

M ′
j = E

[
fξjm(x)

]
=

l∑
i=1

PijqijE [fi(x)] =
l∑

i=1

Pijqijµi (7.2.0.11)

to get the same EV as (7.1.0.5), we must have Pijqij = wij, so the weights are con-

strained to be:

qij =
wij
Pij

(7.2.0.12)

This means that the new scheme for the back projection step is:

x̂j
k+1 = x̂j

k 1

Kj

Kj∑
m=1

uj
ξjm

(7.2.0.13)

where uji =
wij
Pij
zi. This means that the normally distributed variables have different

means and variances:

uji ∼ N

(
wij
Pij

µi,

(
wij
Pij

)2

σ2
i

)
(7.2.0.14)

The new variance of a single MC run can be calculated analogously to the previous

calculation, by noting that the new probabilities are given by Pij, the new variances are(
wij
Pij

)2
σ2
i and the new means are

wij
Pij
µi, while the overall mean Mj is unchanged. This

yields:

d′2j =
l∑

i=1

Pij

((
wij
Pij

)2

σ2
i +

(
wij
Pij

µi −Mj

)2
)

(7.2.0.15)
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And so the total reconstructed variance becomes (after averaging Kj runs):

D′2j =
(
xkj
)2 1

Kj

l∑
i=1

Pij

((
wij
Pij

)2

σ2
i +

(
wij
Pij

µi −Mj

)2
)

(7.2.0.16)

Now we can determine the optimal Pij values by incorporating the normalization

constraint into a minimization problem using Lagrange multipliers:

Gj =
(
xkj
)2 1

Kj

l∑
i=1

Pij

((
wij
Pij

)2

σ2
i +

(
wij
Pij

µi −Mj

)2
)
− λj

(
1−

l∑
i=1

Pij

)
(7.2.0.17)

The partial derivative with respect to λj returns the normalization condition, while

derivatives with respect to the probabilities yield:

∂PijGj = 0 =
(
xkj
)2 1

Kj

(
−
w2
ijσ

2
i

P 2
ij

−
w2
ijµ

2
i

P 2
ij

+M2
j

)
+ λj (7.2.0.18)

so, for the optimal probabilities P ′ij:

Kj(
xkj
)2λj +Mj =

w2
ij (σ2

i + µ2
i )

P ′2ij
(7.2.0.19)

The left had side is a constant. Denoting it by c2j , we get:

P ′ij =
1

cj
wij

√
σ2
i + µ2

i (7.2.0.20)

or, using the normalization condition, we can write:

P ′ij =
wij
√
σ2
i + µ2

i

l∑
r=1

wrj
√
σ2
r + µ2

r

(7.2.0.21)

using the notation γj =
l∑

r=1

wrj
√
σ2
r + µ2

r and substituting back into (7.2.0.16), we can

calculate the minimum variance using Kj MC runs. After simplifying and re-arranging

the equation, we arrive at:

D′′2j =
(
xkj
)2 1

Kj

(
γ2j −M2

j

)
=
(
xkj
)2 1

Kj

( l∑
r=1

wrj
√
σ2
r + µ2

r

)2

−

(
l∑

s=1

wsjµs

)2


(7.2.0.22)

Interestingly the variance using natural probabilities wij is given by a similar expres-

sion:
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D2
j =

(
xkj
)2 1

Kj

( l∑
i=1

wij
(
σ2
i + µ2

i

))
−

(
l∑

s=1

wsjµs

)2
 (7.2.0.23)

7.3 Optimal Distribution of Monte Carlo Samples

Our primary aim is to optimize variance of the whole simulation, not just the iteration

steps for the individual voxels. This means finding the ideal distribution of K MC runs

between the individual voxel reconstructions that use Kj respective Monte Carlo samples.

Therefore the constraint is:

n∑
j=1

Kj = K (7.3.0.24)

And the total variance assuming independent reconstructed voxel activities:

D2
t =

n∑
r=1

D′′2j =
n∑
j=1

(
xkj
)2 1

Kj

(
γ2j −M2

j

)
(7.3.0.25)

Combining the two into an unconstrained minimization problem utilizing Lagrange

multipliers:

Gt =
n∑
j=1

(
xkj
)2 1

Kj

(
γ2j −M2

j

)
− λ

(
K −

n∑
j=1

Kj

)
(7.3.0.26)

Partial derivative with respect to λ returns the constraint, while the partial derivatives

WRT Kj give:

∂KjGt = 0 = λ−
(
xkj
)2 (

γ2j −M2
j

)
K ′2j

(7.3.0.27)

so for optimal K ′j sample sizes:

K ′j =
xkj

√
γ2j −M2

j
√
λ

(7.3.0.28)

finally, using the constraint, we get:

K ′j =
xkj

√
γ2j −M2

j

n∑
r=1

xkr
√
γ2r −M2

r

(7.3.0.29)



OPTIMAL DISTRIBUTION OF MONTE CARLO SAMPLES 42

When individual voxel statistics do not differ significantly then the expression γ2r −M2
r

can be assumed to be independent of index r. In this case the above expression simplifies

to:

K ′j =
xkj
n∑
r=1

xkr

(7.3.0.30)

which is the widely used activity scaled sampling. However, when voxels exhibit varied

behaviour, the above simplification could lead to sub-optimal sampling, and thus increased

reconstructed variance.
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Chapter 8

Reconstruction Results and

Conclusion

The three different back projection samplings were compared by reconstructing an image

using the same uniform forward projection sampling for all three. Results after averaging

10000 different simulations are shown in figure 8.1. The sampling that minimizes back

projection variance does in fact result in slightly lower L2 error in reconstruction.

The three different forward projection samplings were also compared. A reconstruction

was carried out with each forward projection sampling, using the same uniform back

projection sampling for all of them. Results after averaging 10000 different simulations

are shown in figure 8.2. It is clear that minimizing total forward projection variance

does not necessarily result in better reconstruction. Activity weighted forward projection

sampling results in lower L2 error than ”optimal” sampling.

These conclusions are in agreement with [1]. Their findings indicate that minimizing

total variance in the back projection step is a reasonable optimization, but relative LOR

variances should be minimized during forward projection. Based on these results, further

study into a sampling minimizing relative LOR count variances in the forward projection

step is warranted.
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Figure 8.1: The log-linear plot shows total squared error of reconstructed activity values

as a function of iteration number. It can be seen that choosing between uniform and

activity weighted sampling in the back projection step has little to no effect, while the

optimal sampling performs slightly better than the rest. System matrix: [0.3, 0.1; 0.4, 0.8],

activity concentrations: [1, 9]
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Figure 8.2: The log-linear plot shows total squared error of reconstructed activity values

as a function of iteration number. It can be seen that uniform is significantly worse

than either of the others. Furthermore activity weighted sampling performs better than

the theoretically derived optimal sampling. System matrix: [0.3, 0.1; 0.4, 0.8], activity

concentrations: [1, 9]
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Appendices
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Appendix A

Calculations

A.1 Monte Carlo Variances

After defining the model, it is possible to calculate Monte Carlo variances for it. To do

this, let us consider once again S1, the signal measured by L1. Each individual virtual

particle can be assigned a detected weight qi, which describes how much of that particle is

picked up by L1. In our simple case, this can only be 0 or the total weight of the particle.

S1 =
N∑
i=1

qi (A.1.0.1)

Now, by the definition of variance we can write:

δ2S1 =
N∑
i=1

(qi − q)2 (A.1.0.2)

where q is the average weight of detected particles, which is by definition

q =
1

N

N∑
i=1

qi =
1

N
S1 (A.1.0.3)

substituting this into (A.1.0.2) yields:

δ2S1 =
N∑
i=1

(
qi −

S1

N

)2

=
N∑
i=1

q2i − 2
S1

N

N∑
i=1

qi +
N∑
i=1

(
S1

N

)2

(A.1.0.4)

once again making the substitution (A.1.0.1):
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δ2S1 =
N∑
i=1

q2i −
S2
1

N
= S2

1


N∑
i=1

q2i(
N∑
i=1

qi

)2 −
1

N

 (A.1.0.5)

which is the traditional form of Monte-Carlo variance

Signals detected by different LORs are not independent, since the number of particles

going from a specific voxel to different LORs are correlated. This means that there are

non-zero covariances between different LOR counts. S2 can also be defined in a manner

analogous to (A.1.0.1):

S2 =
N∑
i=1

pi = Np (A.1.0.6)

where pi are the detection weights assigned to L2. Now, from the definition of covari-

ance we can write:

δ2S1S2 =
N∑
i=1

(qi − q) (pi − p) (A.1.0.7)

Now substituting in from (A.1.0.1) and (A.1.0.6), we get:

δ2S1S2 =
N∑
i=1

qipi −
S1S2

N
(A.1.0.8)

in this model no particle can be detected by more than one LOR, pi and qi can not be

non-zero simultaneously, so the first term is zero. This means that:

δ2S1S2 = −S1S2

N
(A.1.0.9)
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A.2 Hypergeometric Sums

(2.2.0.4) can be re-arranged to give:

yim

n∑
k=1

1

k

(
n

k

)
pk (1− p)n−k = ymi np (1− p)n−1

n∑
k=1

1

k

(n− 1)!

(n− k)!k!

(
p

1− p

)k−1
(A.2.0.10)

To show that the sum on the right is equal to pFq

(
{1, 1, 1− n} ; {2, 2} ; p

p−1

)
, we can

start from the definition of the generalized hypergeometric function as in [8]:

pFq ({a1, . . . , aq} ; {b1, . . . , br} ; z) =
∞∑
l=0

q∏
i=1

(ai)l

r∏
j=1

(bj)l

zl

l!
(A.2.0.11)

Where (a)l is the Pochhammer symbol (rising factorial notation) defined by:

(a)l =


1 if l = 0
l−1∏
i=0

a+ i if l ≥ 1
(A.2.0.12)

Note that from the above, (1)l = l! and (2)l = (l + 1)!

From the above definitions, we can expand the hypergeometric term:

pFq

(
{1, 1, 1− n} ; {2, 2} ;

p

p− 1

)
=
∞∑
k=0

(1)k (1)k (1− n)k
(2)k (2)k

1

k!

(
p

p− 1

)k
=

∞∑
k=0

k!k! (1− n)k
(k + 1)! (k + 1)!

1

k!

(
p

p− 1

)k
=
∞∑
k=0

(1− n)k
(k + 1) (k + 1)!

(
p

p− 1

)k (A.2.0.13)

The above expression has several important properties. For k ≥ n ≥ 1, (1− n)k =
k∏
j=1

(j − n) = 0, therefore the sum only has to run up to n−1 instead of∞. Furthermore,

for all of these value, the terms (j − n) are negative as well as the p − 1 terms; a (−1)k

multiplier for both expression will make them positive. Making these re-arrangements

and introducing the index i = k + 1 we get:

∞∑
k=0

k∏
j=1

(j − n)

(k + 1) (k + 1)!

(
p

p− 1

)k
=

n∑
i=1

(−1)i−1 (1− n)i−1
i · i!

(−1)i−1
(

p

p− 1

)i−1
(A.2.0.14)
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In the above equation (−1)i−1 (1− n)i−1 = (n−1)!
(n−i)! (this is only true for indices 1 ≤

i ≤ n, which are exactly the indices that appear in the sum). Finally by noting that

(−1)i−1
(

p
p−1

)i−1
=
(

p
1−p

)i−1
, we can write:

n∑
i=1

(−1)i−1 (1− n)i−1
i · i!

(−1)i−1
(

p

p− 1

)i−1
=

n∑
i=1

1

i

(n− 1)!

(n− i)!i!

(
p

1− p

)i−1
=

pFq

(
{1, 1, 1− n} ; {2, 2} ;

p

p− 1

) (A.2.0.15)

Comparing this to (A.2.0.10) proves the initial proposition that

yim

n∑
k=1

1

k

(
n

k

)
pk (1− p)n−k = ymi np (1− p)n−1 pFq

(
{1, 1, 1− n} ; {2, 2} ;

p

p− 1

)
(A.2.0.16)

From the above derivation it is clear that extending the arguments to

pFq

(
{1, 1, 1, 1− n} ; {2, 2, 2} ; p

p−1

)
simply multiplies every term in the sum by 1

k
, and

so (2.2.0.5) gives:

(
yim
)2 n∑

k=1

(
1

k

)2(
n

k

)
pk (1− p)n−k = (ymi )2 np (1− p)n−1

n∑
k=1

(
1

k

)2
(n− 1)!

(n− k)!k!

(
p

1− p

)k−1
=

(ymi )2 np (1− p)n−1 pFq
(
{1, 1, 1, 1− n} ; {2, 2, 2} ;

p

p− 1

)
(A.2.0.17)
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A.3 Probability Density Functions

Given an arbitrary probability density function f(x), by definition we have the normal-

ization property:

∞∫
−∞

f(x)dx = 1 (A.3.0.18)

The definition of the mean:

∞∫
−∞

xf(x)dx = µ (A.3.0.19)

and variance:

∞∫
−∞

(x− µ)2 f(x)dx = σ2 (A.3.0.20)

multiplying (A.3.0.21) by µ and subtracting from (A.3.0.19), we get:

∞∫
−∞

(x− µ) f(x)dx = 0 (A.3.0.21)

The above equations can be used to derive the value of the non-central second moment

around an arbitrary value a:

∞∫
−∞

(x− a)2 f(x)dx =

∞∫
−∞

((x− µ) + (µ− a))2 f(x)dx =

σ2 + (µ− a)2 + 2 (µ− a)

∞∫
−∞

(x− µ) f(x)dx = σ2 + (µ− a)2

(A.3.0.22)
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