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Kivonat

Diplomamunkdmban iterativ PET (Pozitron Emissziés Tomogréfia) rekonstrukeié opti-
malizéldsaval foglalkozom. Kordbbi kutatdsok soran [1]-ben vizsgaltdk a mintavételezési
bizonytalansagoknak a rekonstrukciéra kifejtett hatdsat. Az eredmények Gsszehason-
lithatosagaért a moddszer-specifikus szamoldsaim Monte Carlo alapi rekonstrukcidkra
fokuszalnak. Munkamban a rekonstrukcié Ly hibajanak minimalizalasiara koncentralok.

El6szor részletesen bemutatom az egyszertisitett rendszert, amelyet a munkam soran
alapul veszek. Ezutan a rendszer viselkedését visszaadd matematikai modellt definialok.
Ez a matematikai modell a késobbi elméleti okfejtések alapja. Megmutatom, hogy
tisztan elméleti eredmények levezetéséhez sziikséges lenne pozitiv binomialis véletlen val-
tozok reciprokanak eloszlasat kezelni. Ismert, hogy ennek a problémanak nincs altalanos
megoldéasa és még egyszeriibb esetekben is komoly nehézségekkel jar. Ezen akadaly megk-
eriilésére a véletlen véltozo reciprokat normal eloszlassal kozelitem.

A rendszer tulajdonsagainak a rekonstrukcié mindségére kifejtett hatdsait is vizs-
galom. Ennek érdekében kiszamitom a varhaté rekonstrudlt varianciat a rendszermatrix
elemeinek fiiggvényében. Az eredményekbdl az latszik, hogy a rekonstrukcié rendszer-
matrixok széles skalajan optimalis. Ebbdl kévetkezben az iterativ rekonstrukcié robusztus
képrekonstrukciés eljaras, amely nem érzékeny a rendszerparaméterek kis valtozasaira.

Ezutan levezetek egy elméletileg optimadlis mintavételezést az elérevetités 1épéséhez.
Az optimalizalast a teljes beiitésszam variancidjara végzem, azonban ez nem feltétleniil
eredményez minimalis rekonstrudlt varianciat. Ezt mutatja a 2 x 2 rendszer viselkedését
vizsgalé numerikus szimuldcié eredménye is. A tesztelés eredménye nem tudja
egyértelmiien megadni, hogy az jjonnan javasolt mintavételezés valéban optimalis-e.

A visszavetités lépésére is meghatarozom az optimalis mintavételezést. Ebben a
szamitdsban mér a rekonstrualt kép varhaté négyzetes hibdjat minimalizédlom, igy
ez nagyobb valdszinliséggel vezet valédi képminoség javulashoz. Emellett, a javasolt
mintavételezés megvaldsitasahoz sziikség van a detektalt jelek szorasanak ismeretére, ame-
lynek meghatarozasa nem trividlis feladat. Az édltalam irt 2 x 2 iterativ rekonstrukcié
eredménye szerint az 1j mintavételezés valéban csokkenti a rekonstrukciés hiba mértékét.

Az el6zetes numerikus tesztelés szerint az elérevetités 1épéséhez levezetett
mintavételezés az egyenletes mintavételezésnél jobban, mig az aktivitas aranyos verziénél
rosszabbul teljesit. Azonban a visszavetitéshez meghatarozott optimalis mintavételezés

jobb képmindséget eredményez, mint az eddig hasznalt modszerek.



Abstract

In my thesis I work on improving iterative PET (Positron Emission Tomography) image
reconstruction. Previous research in [1] examined the effect of sampling uncertainties on
reconstruction quality. My method-specific calculations also focus on MC based recon-
struction to allow for comparison of results. Most of my work focuses on minimizing Lo
error of reconstructed activity concentrations.

First I give a detailed technical description of the slightly simplified system I consider
in my research. Afterwards, a mathematical model is defined that replicates system
behaviour. This mathematical model forms the basis of further theoretical inquires. I
show that purely theoretical results would require handling the inverse distribution of a
positive binomial random variable, which is known to be problematic even in the simplest
cases. To avoid this problem, the inverse distribution is approximated by a Gaussian.

The effect of system properties on overall reconstruction quality is also investigated.
This is done by determining the variation of expected reconstructed variance with system
matrix elements. It is found that reconstruction is optimal for a wide range of system
matrices, therefore iterative reconstruction is a robust approach that is not sensitive to
slight variations in system details.

I proceed to derive a theoretically optimal distribution of Monte Carlo particles be-
tween individual voxels in the forward projection step. Optimization is carried out with
respect to variance of total detection count, however this does not necessarily translate to
minimum reconstructed variance. This is illustrated by the numerical simulations I wrote
to test predictions of the model on 2 x 2 systems. Initial results can not differentiate
clearly between the currently used and newly proposed samplings.

[ then derive a similar optimal sampling for the back projection step. This optimization
is performed over reconstructed variance, and is therefore a more promising candidate for
improving reconstruction quality. However, this requires access to variance of individual
LOR counts, which can be difficult to measure. I coded up an iterative reconstruction
for 2 x 2 systems. The results of numerical tests indicate that the theoretically optimal
sampling does reduce reconstruction error.

In conclusion, initial numerical testing shows that the derived forward projection sam-
pling performs better than simple uniform sampling, but slightly worse than the currently
used activity weighted method. However, simulated results also indicate that the proposed

back projection sampling offers an improvement over activity weighted reconstruction.



Chapter 1

System Description

1.1 PET Imaging

In Positron Emission Tomography (or PET), a positron emitting isotope is introduced to
the examined system. This isotope emits positrons, which are annihilated upon coming
into contact with electrons of surrounding atoms. Such an annihilation produces two or
three photons depending on the spin state of the electron-positron system. However, three
photon decays are a factor of 370 less frequent when incident particles have small relative
velocity, as shown in [2]. This condition is satisfied in PET imaging, so three photon
emissions can be disregarded. This means that detected decays emit two photons, which
travel in opposite direction along a line. Once again, the non-collinearity of photons is
neglected, as this study focuses on statistical optimization of Monte Carlo sampling and
not particle transport. Emitted photon pairs are then subjected to coincidence detection
using an array of photon detectors.

The above described simplified setup can be broken down into two main parts. The
physical system itself has an activity distribution, which is the quantity PET imaging
seeks to recover. While the coincidence detected measurement data is taken in Line of
Response (LOR from now on) space. If physical space is discretized into voxels (volumetric
elements), then a simple mathematical model can be formulated that connects measured
data to real quantities.

A, the system matrix describes the behaviour of photon pairs emitted from the ob-
served system. The definition of the individual matrix elements can be written in a simple
form. A;; is the probability that a particle emitted by the j-th voxel is detected by the
i-th LOR. This mathematical description is illustrated in figure 1.1
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Figure 1.1: The real system is discretized into voxels (square grid in the centre), while the
imaging device consists of detector panels (sides of the regular polygon). Each detector
pair constitutes a LOR; and coincidence detection in the two detectors translates to a
particle detection in their LOR. Two LORs are shown: L; and L;y. The system matrix
element A;; is the probability that a photon pair emitted from voxel V; gets picked up by
LOR L;
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1.2 Virtual Measurement Setup

The simplest possible system that allows for a meaningful reconstruction can be used as
a starting point. This system consists of two voxels: V, and Vz and two lines of response
(LOR from now on) L; and Ls. The voxels have activities C'y and Cp respectively
(however, to keep notation simple, from now on ¢4 = Cyut and cg = Cpt decay counts
will be used instead, where t is measurement time).

Particle transport is governed by a known system matrix A, which in this simple case
is a 2x2 square matrix.

To properly define the system, a physical model is also needed. Once again, the
simplest possible one is sufficient. Each emission from a voxel produces exactly one
photon pair. Furthermore, a photon upon interacting with a detector is removed from
the system. Thus the possible outcomes of a photon pair emission are: the photons gets
detected by one of the LORs or they leave the system unobserved.

Our simple system has now been completely defined, and it is now possible to formulate
a mathematical description of its behaviour. A photon pair emitted from voxel j follows
a multinomial distribution: with probability A;; it is detected by L;, with probability As;
it is picked up by Lo and with probability 1 — (A;; + A;2) it escapes the system without

detection. Therefore the whole system can be summarized in the following table:

Va Vb
L A A
1 1 12 (1.2.0.1)
L2 A21 A22
0 |1—(Ain+A45) | 1— (A + Ax)

This model neglects one important property of the system: the inherent stochastic
nature of particle emissions. This was left out to simplify the algebra involved in the

derivations.

1.3 Simulation of the System

Many iterative reconstruction methods have to simulate the system which gives rise to
the acquired data. To better understand the theoretical limits of such an approach, a
simulation that reproduces the behaviour of our virtual setup will be used as the basis of
our calculations. The implicitly assumed analogy between physical integrals and Monte

Carlo sampled quantities is shown in [3].
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The output of the measurement setup is the pair of LOR counts. Measured signals
from L; and L, will be denoted by S; and S5 respectively.
Assuming that upon detection each photon pair gives rise to a unit strength detection

signal we can already write down the expected value (EV from now on) of our signals:

Sl B ) Ca
()] -a () 1502

However, that in itself is not enough to run a simulation. Let us have N, virtual

E

particles emitted from V4 and Np particles from Vgz. To get the right expected LOR
counts, these have to have weights w4 and wg. The expected LOR counts from such a

simulation are also simple to calculate:

(3)

The weights can be determined from the above equations, matching expected simulated

(6} . NAwA
() () usos

E

—A. ( wal4 ) (1.3.0.3)

wpNp

and measured LOR counts:

_ ca _ ¢<B
and so wy = N and wy = e
N = Ny + Np, the total number of virtual particles in the simulation is a very

important quantity that affects the quality of sample statistics.



Chapter 2

Problem Proposition

2.1 Overview

A general iterative reconstruction algorithm follows an iteration scheme such as the one
in [4]:

l
1 m
R Y. e (2.1.0.1)
s=1 t=1

Where A is the system matrix (the first index runs over LORs and the second over
voxels). [ is the number of LORs and n the number of voxels in the system. z¥ denotes
the reconstructed activity in voxel m after k iterations. y;" is the measured count in LOR
0.

The above expression is identical to a Richardson-Lucy deconvolution [5], as the mea-
sured LOR counts are given by the real activity concentrations convolved with the system
matrix and some noise due to the statistical nature of nuclear decay.

The first major problem is the appearance of explicit system matrix elements in the
expression. This is a problem, because A can be very large, and thus impractical to
store. In a human PET system there can be 3 - 10® LORs and 10* voxels, as noted in [6].
The system matrix for such a device has 3 - 10! elements. Such a large matrix would be
impractical to work with, so an alternative method to evaluate approximations to (2.1.0.1)
is important.

One iteration in the reconstruction process can be separated into two steps: forward
projection and backward projection. Forward projection is calculating expected LOR

counts based on the latest estimates of voxel activities. Backwards projection is comparing
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these results to measured LOR counts and correcting the reconstructed activity values
based on the differences in calculated and measured LOR counts.

In (2.1.0.1) the forward projection step is calculating

i = Auaf (2.1.0.2)
t=1
While the back projection is evaluating the whole expression:

l
A oy
k 2 i
Ey A Y (2.1.0.3)

1S A, Yi
s=1

To avoid the necessity of storing the entire system matrix, a Monte Carlo approach

k+1 _
$j =X

may be used in both the forward and backwards projections. This is the method used in
[7]. By taking a closer look at the expressions themselves, it can be seen that the forward
projection poses a serious mathematical problem in a Monte Carlo simulation. In any
realistic system, there is a non-zero probability that a photon gets absorbed, or leaves
the system. This means that there is always a positive probability that a certain LOR

measures zero particles in a Monte-Carlo simulation even if the physically measured count

Y
yi
take on infinity as a value with positive probability. Such a random variable is impossible

was non-zero. This means that the expression z; = which is a random variable, can
to work with numerically, so a different approach is necessary to perform the forward
projection. It is interesting to note that the backwards projection never leads to this

. . Ais . .
problem, as in the expression —“— the denominator can only be zero if the numerator

2 Asj
s=1

is zero as well; this avoids infinite values, but still allows for g instances.

In short, the Monte-Carlo approach poses problems for both forward and back pro-
jections, but numerical treatment of the forward projection is more difficult due to the

appearance of singular values.

2.2 Analytical Results

There are two common methods to avoid infinite values in the forward projection. LORs
with zero simulated counts are either disregarded during the iteration step, or replaced by
values from the previous step. The two cases are very similar, in that it simply disregards
problematic results. The first approach simply replaces all singular z; values by zeros,
while the latter re-draws them according to the probability distribution until it finds a

non-singular value.
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If we consider a simple one voxel, one LOR system, some analytical results can be

derived concerning the distribution of z; values:

= m 1 m - 1 n n—
%=y (y—) =y Zg(k)pk(l—p) "=
v k=1

(2.2.0.4)
m n— p
yi'np (1—p)" ' F, ({1,1,1 —n};{2,2};p_ 1)

where p is the detection probability, n is the total number of virtual particles and ,F
is the generalized hypergeometric function defined in [§].

A similar expression can be derived for z2:

7=y (yi) Sy (%) (1) -nrt=

k=1

m n— p
e (=, (L1 ) 22,22 )

(2.2.0.5)

Detailed derivation of the above results can be found in appendix A.2. From the
above two equations, the expected variance of z; could also be expressed using 6%2z; =
z_f— (2)2 However, it is an unnecessarily complicated expression and therefore is omitted.
Analogous formulae can be derived for the case when infinite values are re-generated
instead of thrown away. These are almost identical to the above expressions and are
therefore omitted.

While the existence of an analytical expression for the mean and variance are positive
results, dealing with the generalized hypergeometric function is cumbersome and numeri-
cal evaluation is computationally intensive. Furthermore, even the simple two voxel, one
LOR system proves to be too complicated for similar calculations; I was not able to find
a closed analytical expression for mean and variance for such a setup. Negative moments
of positive Binomial distributions are required in many studies, however as noted in [9],
there are no known analytical methods for evaluating these moments.

In later chapters I will mostly deal with minimizing .2 errors, therefore the important
expression is not total variance itself, but its various partial derivatives with respect
to particle counts. However, these expressions are in no way simpler than the explicit
formulae given above.

In conclusion, obtaining pure analytical results for iterative PET reconstruction is an
unrealistic goal. Therefore either an approximation; or an alternative, more ad-hoc route

has to be considered.
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Figure 2.1: Comparison of probability distributions. The continuous line shows the normal
approximation, while the dotted lines show a normalized histogram of the true distribution

of values. In this case n = 50 and p = %

2.3 Normal Approximation

In the previous section, it was shown that general, analytical results are unreasonably
difficult to obtain for the whole system.

While the distribution of z; values is difficult to handle, once the singularities are
removed, it has a finite mean and variance. There is a possibility of approximating such
a distribution with a normal distribution with the same mean and variance. Such an
approximation can work well in many cases, but can be very inaccurate in case of ill-
behaved distributions. Figure 2.1 shows this approximation in case of a 1x1 system. The
PDF of a normal distribution provides a reasonable fit to the idealized histogram, which

indicates that such an approximation could lead to useful results.



Chapter 3
Lo Optimal System Matrix

The conclusion of the previous chapter was that it is very difficult to derive purely ana-
lytical results for an iterative reconstruction scheme. In this chapter we investigate the
effect of the system matrix on total reconstructed variance. If reconstructed variance is
a slow-varying function of individual system matrix elements, that means that iterative
reconstruction is a robust approach. However, if variance has a sharp minimum then

performance is heavily dependent on minor details of the system.

3.1 Introduction

As discussed in the previous chapter, the general form of an iterative reconstruction
algorithm is:
k1 ok L l yi"
K3
ZIZ'j :l’j . ZAl]n— (3101)
Z Asj i=1 Z AAztl’é€
s=1 t=1

Where A is the system matrix (the first index runs over LORs and the second over
voxels). [ is the number of LORs and n the number of voxels in the system. xf denotes
the reconstructed activity in voxel m after k iterations. y" is the measured count in LOR
i

The above can be re-cast in a more convenient form:

! l
Ayj Y
k k § ?, 7 k E
=1 3 Ay ; 1: Ay =1
s=1 =
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where w;; is the abstract weight factor which is given by the reduced system matrix

element:

Ay

> Ay
s=1
and y; is the ratio of measured and expected counts in LOR i:

m

= (3.1.0.4)
> Ay
t=1

The weights satisfy the following normalization property:

l
> wy =1 (3.1.0.5)
=1

To achieve optimal reconstruction in L, norm, the total variance reconstructed of
quantities has to be minimized. Assuming previous reconstructed values and abstract

weights to be constants without variance, total variance can be expressed as:

82kt = Z w}0%2; (3.1.0.6)

We know that the distribution of y; can not be handled analytically, but we can assume
that the distribution has a known variance and proceed with that. From now on we will

use the values:

022 = o2 (3.1.0.7)

So now we have

Skt = (xk?)Q szvz (3.1.0.8)

This has to be minimal to achieve L2 optimal reconstruction.
There are two possible ways to proceed. Inter-voxel correlations can either be ignored

or taken into account. The total variance neglecting correlations is:

n n l
Dy=7) &aytt=3 ((fﬁ?)2 Zw?jaf) (3.1.0.9)
j=1

j=1

And the expression accounting for covariances is:
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D2 =62y okt (3.1.0.10)
j=1

This expression can be refined using the following:

n l

n l n
Zx?“ = Z (xf Zwijzi> = Z (zl Zx?ww) (3.1.0.11)
j=1 i=1 j=1

j=1 i=1

And so (3.1.0.12) becomes:

l

D? = §2 Z (zi iﬁ%;) —
j=1

l
=1 =

n 2
o? <Z wijx§> (3.1.0.12)
1

% 7j=1
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3.2 Equations to Solve

Using the variance formulae from the previous section, it is possible to derive the necessary
equations that lead to minimal total variance.

The previously stated normalization condition has to be incorporated as a constraint:

!
d wy=1 (3.2.0.13)
i=1

Neglecting correlations, we have:

n l
p?=%" ((xg?)? waja§> (3.2.0.14)

j=1
Applying the method of Lagrange multipliers to the above equations, we can define a

function that can be minimized without constraints:

G, = i ((@)2 wajaf) + i A (1 — Zwij> (3.2.0.15)

j=1 i=1
And from this, minimizing with respect to every variable (A5, w,,) we get the following

system of equations:

l
O0Gn=0=1-> w, (3.2.0.16)
=1

which of course is equivalent to the normalization constraint.

The partial derivatives with respect to weights yield:

By G = 0 = 2wy, (a8)* 02 — A, (3.2.0.17)

In a completely analogous manner, the results accounting for correlations can be found.

The function to be minimized:
l n 2 n l
Ge=>|o? (Z wijgﬁ) +) N (1 > wij> (3.2.0.18)
=1 Jj=1 j=1 i=1
Once again we recover the normalization condition:

l
7Ge=0=1-> w, (3.2.0.19)
=1
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And the remaining equations are:

Oy Ge = 0 = 2022F (Z wthf> p (3.2.0.20)
t=1

3.3 2x2 Systems

Calculations for the 2x2 system are tractable, but still illustrate some important properties

of larger systems. Therefore a detailed solution will be included for such systems.

3.3.1 Neglecting Correlations

When correlations are neglected, we get the following system of equations from (3.2.0.15):

)\1 2’LU11 (.I’If) U%
E\2 2
Al | e (x;)Q 72 (3.3.1.1)
/\2 211)12 (ZE'Q) O'%
/\2 211}22 (IQ)Q O'g

and the constraints:

1 wi +w
= " (3.3.1.2)
1 W12 + W2
From (3.3.1.1), by adding o3 times the first equation to o? times the second we get:

M (07 +03) =2 (win + wan) (a:]f)Q olos (3.3.1.3)

applying the same the third and fourth equation yields:

Ao (07 +03) = 2 (wia + wan) <I§)2 olos (3.3.1.4)

Substituting in from the constraints, the above two equations become:
B2 _ 1
AN ==
= t (3.3.1.5)
A2 T

And finally substituting back into (3.3.1.1), we get:
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»—91\)""
-+
toqw""

HQM""
+
toqw"“

(3.3.1.6)

»—-qto‘ =
+
wqw‘ =

—

Q q q q
N[\)H F—‘MH l\:'lOH P—‘NH
—

»—Aqw‘ =
+
MQN‘ =

3.3.2 Including Correlations

(3.2.0.18) gives the following equations:

riwy + x2w12

(3.3.2.1)

riwy + xzwlg

(¥ )
(zhwar + 2hwan)
(¥ )
(¥ )

Tiwo + $2w22

and constraints:

Ly [ wn+wx (3.3.2.2)
1 Wiz + Wa2

From the first two equations in (3.3.2.1), we get:

o1 (2w + 2hwis) = 03 (2fwar + Thws) (3.3.2.3)

Substituting this result into the third equations yields:

)\2 = 227’50'; (Ilf'll}21 —+ x§w22) (3324)

which is the fourth equations itself. This means that the system of equations is redun-
dant and thus does not have a unique solution. This degeneracy is further discussed in
the next section. Still, we can go a bit further. Substituting the constraints into (3.3.2.3)

we get:

o7 (zfwir + 5win) = 03 (2f (1 — wn) + 25 (1 — wiz)) (3.3.2.5)

which can be rearranged to yield:

1 aF + 2%

k k 1 2
TiWy + Towig = 5 ——F 3.3.2.6
' ? % a-lf 0'12 ( )

this is the equation of a straight line in wy; and w;s.
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3.4 Larger Systems

The general solution for n x [ systems is given here.

3.4.1 Neglecting Correlations

Based on the results from the 2x2 system, it is relatively simple to guess the general

solution:

A =2 (24)° (3.4.1.1)

and

Wy = —1 (3.4.1.2)

These weights trivially satisfy the normalization constraint (3.2.0.13), and the follow-

ing equations as well:

Dy G = 0 = 2wy, (2F)* 02 — A, (3.4.1.3)

Therefore the initial guesses must coincide with the solution. It is important that the

numerical evaluation of the solution is also feasible. It can be performed without extensive

!
CPU or memory cost if the common term ) C% is calculated and stored in advance.
t=1 "
This provides a way to estimate the difficulty of reconstruction for the particular system

considered.

3.4.2 Including Correlations

From subsection 3.2, we have the normalization (3.2.0.13) and

Oy Ge = 0 = 2022F (Z wthQf) —\ (3.4.2.1)
t=1

the above can be re-arranged to read:

Ar .
ol 21 (Z wthf) (3.4.2.2)
q =1
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summing over all LORs gives:

>~

2
[N 3

l
q=1

n n l n
= Z <2xff <Z wthf>> = 22" Z (xf qut) = 22" Z zk (3.4.2.3)
t=1 t=1 =1 =1

g=1

where the last equation follows from the normalization condition. The above can be

re-cast into:

¥ (3.4.2.4)

3

& 1
QUSIE (Z wthf> = 2k p xf (3.4.2.5)

t=1 1 =1
o2
g=1 1
simplifying leads to:
qutxt - P (3.4.2.6)
t=1 q 1 ¢=1
s=1 7

Together equations (3.4.2.2) and (3.4.2.6) are equivalent to (3.4.2.1), therefore this is
all we can determine about the position of the minimum if correlations are included. This
means that the minimum is a multi-dimensional surface, therefore the effect of individual
system matrix elements on total reconstructed variance is relatively small. This is an
important theoretical result concerning iterative reconstruction schemes.

Results derived neglecting and including correlations differ greatly. This discrepancy
demonstrates that correlations between individual LOR counts have a significant impact
on variances. Therefore, neglecting these correlations could lead to false results and

improper optimizations.

3.5 2x2 Simulation Results

A simulation was used to check the theoretical results described in this chapter. It deter-
mined the variance of a weighted sum of two normally distributed random variables based
on the weights used. For the depicted results, 50 divisions were made in both w; and wy».

Each point on the graph was calculated as the sample variance of 100000 individual runs
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(random numbers), and the following values were used for oy, o9, 2%, 25 in turn: 4,5, 3, 2.

The results are shown on figures 3.1 to 3.4.

Total variance neglecting correlations

v ]
] ‘

320

0.9
300
0.8
280
0.7
- 1260
0.6
- 1240
0.5}
- 1220
0.4
- 1200

0.3
180

0.2

160

140

0.6 0.8 1
wll

Figure 3.1: Total variance neglecting correlations as a function of reduced system ma-
trix elements. As predicted by previous calculations, there appears to be a well-defined

minimum.
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Total variance including correlations

600

550

- 1500

- 1450

- 1400

350

300

250

wll

Figure 3.2: Total variance including correlations as a function of reduced system matrix
elements. As predicted by theory, the true minimum is degenerate, indicating that a wide
range of system matrices allow for Ly optimal reconstruction. In agreement with (3.3.2.6),

the minimum follows a straight line.
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Relative deviation from theoretical value (neglecting correlations)

0.01

0.005

-

N s e =

..!l 2 "= 1% -“—'rl' - :._ -
Wy

—-0.005
-0.01
—-0.015

Figure 3.3: Relative difference between simulation and theoretical value; correlations are
neglected. The plot shows that there are no noticeable systematic differences between

simulated and calculated results.
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Relative deviation from theoretical value (including correlations)

paz W o |
. ]

0.01

0.005

—-0.005

-0.01

—-0.015

Figure 3.4: Relative difference between simulation and theoretical value; correlations are
included. The plot shows that there are no noticeable systematic differences between

simulated and calculated results.
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Chapter 4

Optimizing Forward Projection for

2 X 2 Systems

While results discussed in the previous chapter are interesting, they do not help in building
a better reconstruction algorithm. It was demonstrated in chapter 2 that the main source
of mathematical difficulties is the forward-projection step.

When the system matrix can not be stored in memory, Monte Carlo simulations are
used to approximate LOR counts. These counts are then used to correct voxel activity
estimates. This is a crucial step in the reconstruction process, and is therefore a good
candidate for optimization. In the following two chapters I will outline a computationally
feasible method for ensuring minimal variance of simulated LOR counts.

Most of the following results will concern true variances, but Monte Carlo variances
for the test system can be useful for simulation purposes. These results can be found in

appendix A.1.

4.1 Variances

4.1.1 Single LOR Variance

S is the number of photon pairs detected in L;. It consists of two parts, photons arriving
from voxel V4 and those from Vg. Denoting the number of detected particle pairs from

V4 by ¢ and the number from Vg by j, we can write:

Si(i, ) = wai + wpj (4.1.1.1)

To determine the expected value, the probability of detecting ¢ and j particle pairs
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from V4 and Vp respectively is also necessary. The behaviour of particles emitted from a
specific voxel (eg. detected by D1 or leaving the system) are determined by a multinomial
distribution dependent on the system matrix A. Since particle emissions in V4 and Vp
are independent, the overall probability of the pair (i,j) is simply the product of two

binomial distributions.

P(#Va— Li=i,#Vp = Li=j) =P (#Va— L1 =14)-P(#Vp = L, =j) =
(s (o)
(4.1.1.2)

Variance can be calculated according to its definition:

528, =52 -5, (4.1.1.3)

S, is known, however to determine S_%, the following sum has to be calculated:

_ M ls N N 4
(4.1.1.4)
While it is possible to evaluate the above sum by purely algebraic means, a simple
statistical argument can be used instead to quickly find the variance.

S1 is the weighted sum of random variables drawn from two independent binomial

distributions, thus it is a random variable from the distribution S; given by:

81 :wAB1A+U)BBlB (4115)

where Big ~ B(Na, A1), Bip ~ B(Np, A12) and B(N,p) denotes a binomial distri-
bution with N trials and probability p. From here, evaluating EV and variance of &

becomes trivial:

E[Sl] == U}AE[B(NA, AH)] + U)BE[B(NB, Alg)] == U}ANAAH + U}BNBAlg (4116)

and

]D)2 [81] = U)ZD2[B(NA, All)]+QUZBD2[B(NB, AlZ)] = w[quAAll(l—A11)+MZBNBA12(1—A12)
(4.1.1.7)
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which is the variance of S.

By the same argument and calculations, the expected variance of Sy is:
5282 == D2[SQ} == wiNAAgl(l - Agl) + w2BNBA22(]_ — AQQ) (4118)

4.1.2 Covariance

Calculating the covariance between S; and S5 is similar to calculating individual variances.
Definitions of important quantities: 7; is the number of photon pairs detected by L; from
Va, 71: particle pairs from Vg detected by L;. And similarly i,: particle pairs from V4 to
Ly and j,: photon pairs from Vg to Lo

The definition of the covariance:

62515y = 519, — S, - Sy (4.1.2.1)

Since particles from V4 and Vp are independent, we can write the probability mass

function as:

P(#Va—= Ly =01, #Va = Lo =i0, #Vp = L1 = j1, #Ve — L1 = j2) =

(4.1.2.2)
P(#Vs — Ly =i1,#Va = Ly =is) - P(#Ve = L1 = j1,#Ve — L1 = j2)

Knowing that photon pairs emitted from a voxel follow a multinomial distribution, we

can write:

P(#VA — Ll = ’il,#VA — LQ = 22) =
(4.1.2.3)

Ny! i Noa—iq—i o
A AZ (1 - (A A AT — M (Ayq, Aoy, N
il (Na —ir — )] BAZ ( (A1 + As1)) (A11, Aa1, Na, i1, i2)

and

P(#VB — L1 = j1,#Ve — Lo :jQ) =

N3! g1 Ad2 Np—j1—j2 C
g gt Az (L (it da)) =M (412, Az, N 1, 52)
(4.1.2.4)
Here M(z1,xo, N, p1,p2) denotes the probability mass function of a multinomial dis-
tribution with three outcomes, arguments related to the third bin have been dropped
without loss of generality. Since S; and S, are known, only 5755 has to be determined.

From the above definitions:
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5159 = (wath + wpjr)(wais + wpjs2) (4.1.2.5)

and so:

Na Na—i1 Np Np—j1

S15; = Z Z Z Z (wati+wpjr) (wais+wpjz)M (A1, Aor, Na, i1,92) M (A1a, Ao, Np, j1, j2)
91=0 i2=0 71=0 j2=0

(4.1.2.6)
Once again it is possible to evaluate the sum relying on algebraic means, but there is
a simpler way using certain results from probability theory. As in the previous section,

the distributions of S; and S5 can be written as:

81 = wABlA + U)Blng (4127)

and

Sy = wuaBos + wrBsp (4.1.2.8)

where Big ~ B(Na, Aw1), Bip ~ B(Np, A12), Baa ~ B(Nga, As1), Bap ~ B(Np, Az)
and B(N,p) denotes a binomial distribution with N trials and probability p.

Using this formulation, the covariance in question can be written:

625182 = wiD?[Bia, Boa] + wiD?[Big, Bap] + wawg (D*[Bia, Bag] + D*[Big, Baa))
(4.1.2.9)
Distributions that belong to different voxels are independent, but those that carry the
same voxel index are correlated. Using the known covariance matrix of the multinomial
distribution (off diagonal elements are of the form —Np;p;, as in [10]) the covariance can

be evaluated:
523152 = szQ[BlA, BQA] + UJQB]DQ [BlBa BQB] = —w%NAAllAzl — ’w%NBAlgAQQ (41210)

4.2 Total Signal Variance

Our signal is S; + 59, therefore the total signal variance is given by:

52(Sy + Sa) = 025, + 628, + 202515, (4.2.0.11)
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Substituting in from equations (4.1.1.7), (4.1.1.8) and (4.1.2.10) we get:

52(51 + 52) = wiNAAH(l — AH) + ’LUJQBNBAlg(l — A12)+ (4 90 12)
WiNaA2 (1 — Ag) + whNpAxn(l — As) — 2 (wiNaA11Asy + whNpAi2As)

After some re-arrangement, the above can be cast in the form:

(52(51 + SQ) = wiNA (1 — (AH + A21)> (AH + Agl) + w%NB (1 — <A12 + AQQ)) (A12 + Agg)
(4.2.0.13)

This can be re-written in a more convenient form:

62(S1 + S9) = wiN4 (1 — Py) Py +w%iNp (1 — Pg) Py (4.2.0.14)

where Py = Aj; + As; is the probability that a photon pair emitted from voxel Vj
gets picked up by one of the LORs and likewise Pg = A5 + Ags is the probability that a
particle pair from Vg gets picked up.

4.3 Alternative Derivation

While the above derivation for total measured variance is sound and natural in a sense, it
is complicated an unfeasible to apply for larger systems. Therefore it is important to have
an alternative solution that is easier to generalize. To this end, let us think of the total
measured signal in a different way. While it is apparent that the total measured signal is
the sum of all individual LOR counts, it can also be calculated by summing contributions
from individual voxels. Once again denoting the number of virtual particle pairs going

from VA to L1 as il, from VB to Lli jl, VA to Lgl iQ, VB to Lgi jg

Sl+82 = (wAi1 + ij1)+(wAi2 + ijg) = wA(21+22)+wB(j1+]2) = SA—I—SB (43015)

where Sy and Sp are the total LOR counts caused by the individual voxels (ie. S4 is
the total signal that would be observed if Vp was completely removed from the system).

Sy and Sp are much simpler to handle than S; and S5 owing to their simpler distribu-
tions. S84, the distribution from which S, is drawn, is a weighted sum of two independent
binomial distributions, as in (4.1.2.7) and (4.1.2.8) :
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Sa=waBia+waBas = w4 (B(NA, All) -+ B(NA,Agl)) = wAB(NA, A]_]_“I‘AQ]_) (4.3.0.16)

The above result is also easy to derive from the system itself. A virtual photon pair
from V, is either detected by one of the LORs and results in a w,4 strength measured
signal, or escapes the system. Therefore in terms of total measured signal, the only

relevant information is whether the particles get detected or not. Thus we can write:

SA = ’U)AB<NA,PA> (43017)

This is exactly the same as the above result. Similarly we get:

SB = UJBB(NB, PB) (43018)

The variance of the binomial distribution D*[B(N, p)] = Np(1 — p) as in [10], is well

known and using this, we can write:

D?[S4] = wiD?[B(Na, P4)] = wiNaPs(1 — Py) (4.3.0.19)

and

D?[Sp] = wiD?*B(Np, Pg)] = wiNpPp(1 — Pg) (4.3.0.20)

Since decays and subsequent particle paths in different voxels are independent of one
another, S, and Sp are also independent. Since S; + Sy = S4 + Sp, we can write the

total variance as:

62(S) + Sy) = 02(S4 + Sp) = D?[S4] + D?[Sp] = wiNAPs(1 — Py) + wiNpPg(1 — Pg)
(4.3.0.21)

which is exactly what we had before.

4.4 Minimum Total Variance

Previously we have shown that total variance of the LOR counts is:

62(S1 + S3) = wi N4 (1 — Py) Py +w%iNp (1 — Pg) Py (4.4.0.22)
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N, and w4 are not independent quantities, as demonstrated by (1.3.0.4). Minimizing
total variance is easier if the equation is written in terms of independent quantities, so

substituting in from (1.3.0.4), we get:

2 2
02(Sy + Ss) = ;—i (1— Py) Pa+ ]CV—Z (1— Pg) Pg (4.4.0.23)

While N4 and N can be varied independently, to get meaningful minimization results
N = N4+ Npg should be kept constant. The method of Lagrange multipliers can be used

to incorporate all of the necessary constraints in the minimization problem:

- c? c2
0= Yl (52 (1= PV P+ 2 (1= Po) Pa = AN = (N + Vi)

(4.4.0.24)
Variables of the gradient are N4, Ng, A, where X is the Lagrange multiplier itself and

N';, Nj; is the place of the minimum. Evaluating the derivatives yields:

c2

0 A— N_jpr(l — Py)

0 |=| A= &%Ps(1— Pp) (4.4.0.25)
B

0 N — (N} + Np)

The above equations can be solved to find N, which minimizes total variance:

1
NA =N (4.4.0.26)
14+ ¢ Pp(1-Pp)
caA PA(lpr)

However, it might be more convenient, to simply rearrange the equations into a sym-
metrical form:
N’ N;
A = B (4.4.0.27)

CA\/PA(l—PA) CB\/PB(l—PB)

and keep the constraint N = N/, + N in mind. This solution minimizes variance by

defining a simple and symmetrical weighting for the number of virtual particles originating

from individual voxels.
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Chapter 5

Optimizing Forward Projection in a

General System

5.1 Total Variance

Real imaging systems have more than two LORs and voxels. Let us consider a sys-
tem of n voxels: Vi, V5, ..., V,, and [ LORs: Ly, Lo,...,L;, whose measured signals are
S1,59,...,5;. Using notation similar to that applied in the 2 x 2 system, the total number
of decays in the individual voxels are: ¢y, ¢s,...,c,. The number of virtual photon pairs
started from them are: Ny, Ny, ..., N, and their weights are wq, ws, ..., w,. Analogous

to (1.3.0.4) these are related by:

Elements of the system matrix A are defined as follows: A;; is the probability that a
particle from voxel V; gets picked up by LOR L;.

The total measured LOR count can once again be written as:

l
Sr=>_5 (5.1.0.2)
i=1

And defining the total signal contributions from the individual voxels as Sy, (analogous

to S4 and Sp in (4.3.0.15)), the above can be expressed as:

l n
Sr=> 8= 5y (5.1.0.3)
=1 =1
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we know that Sy, are independent and also that they are binomially distributed as in
(4.3.0.17):

where P; is the probability that a virtual particle starting from V; get detected by one
of the LORs. This means that the variances of voxel contributions are given by:
D?[Sy;] = wiN;Pi(1 — P) (5.1.0.5)
From the definition of the system matrix P; values can be calculated as:

l

P=> Aj (5.1.0.6)
j=1

using this and independence, we can already write down the total variance:

Sy =Y D’[Sy] = > wiN;P(1 - P) (5.1.0.7)
=1 =1

5.2 Minimum Variance

We know that total variance of LOR counts in a general system is given by:

Sy =Y D’[Sy] = > w!NP(1 - P) (5.2.0.8)
=1 =1

Cq

If we substitute in w; = o we get:

[\

55, =3 ip(1-P) (5.2.0.9)

i=1 't

&=

()

n
this is the expression we aim to minimize. As before, the total particle count N = > N;
i=1
should be kept constant. Using Lagrange multipliers, the minimization problem can be

formulated as:

n n 2
0= V|yn (—)\ (N - ZNZ) +) Cﬁ (1-P) B) (5.2.0.10)
i=1 i=1 "

Evaluating the expression at the individual indices gives:
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2

]\?,Q (1-P) P, (5.2.0.11)

substituting in from the equation for index ¢ into the one for index j, we get:

0=\—

2

15_52(1_3)3:;_22(1_3)13]. Vi,j €1,...,n] (5.2.0.12)

rearranging the above equation leads to:

NN
cin/(1=P)P;  ¢j\/(1-P;)P;

which means that the distribution of virtual particle pairs which minimizes total vari-

Vi,je(l,...,n] (5.2.0.13)

ance in the forward projection is given by:

/P(1_P
v = yavhl = F) (5.2.0.14)
_10]-\/13]-(1—]3]-)

J
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Chapter 6
Forward Projection Simulation

A simulation was written to test the theoretical results. It uses a setup identical to the
one introduced in section 1.2. It consists of two voxels and two LORs. The voxels emit a
given number of virtual particles that have weights defined in (1.3.0.4). Subsequent fates
of said particles are determined by random samples drawn from a multinomial distribution
characterized by the system matrix.

Simulation results were compared to calculated variance values. Both cases, neglected
and included LOR correlations, were tested. Simulation results and comparisons to the-

oretical values are shown on figures 6.1 and 6.2.
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6.1 Simulation Results

Variance of measured signals

O-Ol T T
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*  measured
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calculated corr

0 200 400 600 800 1000
Na (#particles started from voxel A)

Figure 6.1: Linear plot of variance results. It is clear that simulated and calculated

results accounting for correlations are in agreement.

slight deviation from simulated values.

Neglecting correlations causes a
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) Variance of measured signals
10 T T T

*

—— calculated nocorr |
calculated corr

measured

10_ 1 1 1
0 200 400 600

Na (#particles started from voxel A)

800 1000

Figure 6.2: Log-linear plot of variance results. It is clear that simulated and calculated

results accounting for correlations are in agreement. Neglecting correlations causes a slight

deviation from simulated values.
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6.2 Effect on Measured Signal

While the total variance of the forward projection step is an important measure, it is not

what actually affects the quality of reconstruction. The quantity that has to carry low
Z;m, the ratio of measured and simulated LOR counts. Several simulations were

run to determine the effect of different samplings on this quantity. The measured values

variance is

were replaced with true EVs (this doesn’t affect the behaviour of different samplings).
Results are shown in figure 6.3 and 6.4. The conclusion is that neither sampling is obvi-
ously closer to the true minimum than the others. Depending on system specifics, relative
performance of the three tested samplings (uniform, activity weighted and theoretically
optimal) vary greatly. To properly compare their performance, a whole iterative recon-
struction is needed, such a comparison can be found in chapter 8. The fact that optimal
total forward projection variance does not immediately translate to better reconstruction
is in agreement with [1]. According to their findings, relative variance of individual LOR

counts is more relevant to reconstruction quality.
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Figure 6.3: Total variance of the ratio of measured and simulated LOR counts.
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Red

markers show simulation results, while vertical lines show what portion of all virtual

particles the different samplings appoint to voxel A. System matrix: [0.1,0.04;0.4,0.05],

voxel activities: [1,12].
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Variance of measured signals
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Figure 6.4: Total variance of the ratio of measured and simulated LOR counts. Red
markers show simulation results, while vertical lines show what portion of all virtual
particles the different samplings appoint to voxel A. System matrix: [0.1,0.45;0.15,0.5],

voxel activities: [1,12].

10000
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Chapter 7
Optimizing Backward Projection

After discussing the forward projection step, it is worthwhile to analyze backward projec-

tion as well.

7.1 Introduction

To choose an approach for optimization, it is important to understand exactly how the

system works. The back projection step uses the formula (3.1.0.2):

! m l
k“ = 1 Z z — Yi = fowijzi (7.1.0.1)
i=1 Z o Z Ak i=1

where w;; are the reduced system matrix elements and z; are the ratios of measured
and simulated LOR counts. While the system matrix elements are not known (the matrix
is too large to store in memory), they can be simulated during reconstruction to evaluate
the above expression. The way this is done is that a particle transport simulation is run
which chooses LOR 4 with probability w;;. The indicator variable ¢’ is the index of the
particular LOR that picked up the photon pair. To properly approximate the above sum,

multiple particle transport simulations are needed. If K is the sample size, then

1l <m < K; (7.1.0.2)

are the indicator variables, which are multinomially distributed with probabilities w;;
and sample size K;. This sampling is used in [7] with activity weighted K; values.

Now, the Monte Carlo estimate for the reconstructed voxel count can be written as:
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g =2 =Yz, (7.1.0.3)

To proceed further, information about the distribution of z; is needed. Like before,
we can assume that it is a normal random variable with mean yu; and variance o2, or
; ~ N (i, 0?). If we denote the probability density function by f;(z), then the PDF of

Ze, Is given by:

fo (@) Zwmfz (7.1.0.4)

(the individual PDF-s have to be Welghted by the probability that they are chosen in

any one trial). The expected value can then be expressed as:

M, = E[fcg } Zwm fi(w Zwupl (7.1.0.5)

The above shows that the EV of the above MC procedure is exactly the deterministic
result (3.1.0.2), therefore it is an unbiased estimator for the iterative reconstruction step.

Determining the variance of Ze 18 also possible.

& =D [, ()] = / (2 — My)? £, (2)do = wa / _ M) fia)dr (7.1.0.6)
The second non-central moment of a distribution can be calculated analytically (see

appendix A.3, and (A.3.0.22) in particular). So the problematic term on the left becomes:

/ (z — M) fi(x)dx = 02 + (s — M;)? (7.1.0.7)

—00

and so the variance reads:

- Zwij (07 + (i = M;)°) (7.1.0.8)

Since the reconstructed activity is calculated from the average of K; independent
identically distributed (IID) random variables, the variance is reduced by a factor of Kj,

so the variance of the reconstructed activity can be written as:

1 l
D? = (z4)* 77, 2w (07 + (= D)) (7.1.0.9)
=1



OPTIMAL BIASED PROBABILITIES 39

7.2 Optimal Biased Probabilities

A possible method for reducing variance, while keeping the EV constant is to introduce
a bias in the selection probabilities. Instead of using the natural w;; values, we can
opt to use a selection method that has probabilities F;;. These still have to satisfy the

normalization:

d pi=1 (7.2.0.10)

i=1

otherwise they would not define proper multinomial distributions. Furthermore, the
change in probabilities has to be compensated for by introducing weight factors that
multiply the z; values. Denoting these weights by ¢;; and the new indicators by & | the

new EV is is given by:

[fsﬂ ] ZPW% [fi(x ZP”qmuz (7.2.0.11)

to get the same EV as (7.1.0.5), we must have Pj;q;; = w;j, so the weights are con-

strained to be:

Wi
ij = 7.2.0.12
This means that the new scheme for the back projection step is:
1
B =g (7.2.0.13)
Kj m=1 "
where u] = 2z This means that the normally distributed variables have different
ij

means and variances:

2
Wij Wij 2
~ A .2.0.14
ul N(Pm (Pij> O’l> (7.2.0.14)

The new variance of a single MC run can be calculated analogously to the previous

calculation, by noting that the new probabilities are given by F;;, the new variances are

2
(%) o7 and the new means are Z2/;, while the overall mean M; is unchanged. This
ij

Pij
12 1) 2 1]
d; § :PU (< Z]) o; + (Pij i — Mj) ) (7.2.0.15)

yields:
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And so the total reconstructed variance becomes (after averaging K, runs):

l 2 2
1 ij ij
ij

Now we can determine the optlmal P;; values by incorporating the normalization

constraint into a minimization problem using Lagrange multipliers:

l 2 l
1 i ij
G, = (%) ZP“ ((W) 02 + (%Mi_Mj) > — )\ <1— ) Bj> (7.2.0.17)
P ij i=1

The partial derivative with respect to A; returns the normalization condition, while

derivatives with respect to the probabilities yield:

op,Gj = 0—(kf——( u%r ”’+Aﬂ)+Aj (7.2.0.18)
YK\ TR ’

so, for the optimal probabilities P;;:

K; wiy (07 + 1)
A+ M = ]W (7.2.0.19)
(xj) i

The left had side is a constant. Denoting it by cj, we get:

1 /

J
or, using the normalization condition, we can write:

ST T2

Py — VO T (7.2.0.21)
Wrjr/OF + i
T:ZI J H

l
using the notation v; = > w,;4/02 + p2 and substituting back into (7.2.0.16), we can
r=1
calculate the minimum variance using K; MC runs. After simplifying and re-arranging

the equation, we arrive at:

Dy = (ah)’

J

I 2
K%( — M7) = (af) (Zwm 02+Mr> - (ZU@%)
(7.2.0.22)

Interestingly the variance using natural probabilities w;; is given by a similar expres-

sion:
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I ! 2
1
=1 s=1

7.3 Optimal Distribution of Monte Carlo Samples

Our primary aim is to optimize variance of the whole simulation, not just the iteration
steps for the individual voxels. This means finding the ideal distribution of K MC runs
between the individual voxel reconstructions that use K; respective Monte Carlo samples.

Therefore the constraint is:

Y K=K (7.3.0.24)
j=1

And the total variance assuming independent reconstructed voxel activities:

n n

D} = "Dy =" (ab) K% (v2 — M?) (7.3.0.25)

r=1 j=1
Combining the two into an unconstrained minimization problem utilizing Lagrange

multipliers:

n

G=> (z4)’ Ki (2 — M?) =\ <K - Xn: Kj) (7.3.0.26)

j=1
Partial derivative with respect to A returns the constraint, while the partial derivatives
WRT K; give:

)2 (42 — M2
aKjGt:o:A—(xﬂ) (Zéf.z ;)
J

(7.3.0.27)

so for optimal K sample sizes:

, x? \/ 7J2 B Mj2
Kj = (7.3.0.28)
VA

finally, using the constraint, we get:

K= (7.3.0.29)
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When individual voxel statistics do not differ significantly then the expression 2 — M?

can be assumed to be independent of index r. In this case the above expression simplifies
to:

k
K= fj] : (7.3.0.30)
Ly
r=1

which is the widely used activity scaled sampling. However, when voxels exhibit varied

behaviour, the above simplification could lead to sub-optimal sampling, and thus increased

reconstructed variance.
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Chapter 8

Reconstruction Results and

Conclusion

The three different back projection samplings were compared by reconstructing an image
using the same uniform forward projection sampling for all three. Results after averaging
10000 different simulations are shown in figure 8.1. The sampling that minimizes back
projection variance does in fact result in slightly lower Ly error in reconstruction.

The three different forward projection samplings were also compared. A reconstruction
was carried out with each forward projection sampling, using the same uniform back
projection sampling for all of them. Results after averaging 10000 different simulations
are shown in figure 8.2. It is clear that minimizing total forward projection variance
does not necessarily result in better reconstruction. Activity weighted forward projection
sampling results in lower Ly error than "optimal” sampling.

These conclusions are in agreement with [1]. Their findings indicate that minimizing
total variance in the back projection step is a reasonable optimization, but relative LOR
variances should be minimized during forward projection. Based on these results, further
study into a sampling minimizing relative LOR count variances in the forward projection

step is warranted.
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Convergence of different iteration schemes

10° . .

Uniform
Activity
Optimal

10

Iteration number

10

11

Figure 8.1: The log-linear plot shows total squared error of reconstructed activity values

as a function of iteration number. It can be seen that choosing between uniform and

activity weighted sampling in the back projection step has little to no effect, while the

optimal sampling performs slightly better than the rest. System matrix: [0.3,0.1;0.4,0.8],

activity concentrations: [1,9]
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Convergence of different forward projection samplings
10 | T T T T T T T T T
I Uniform

Activity
Optimal |7

Iteration number

Figure 8.2: The log-linear plot shows total squared error of reconstructed activity values
as a function of iteration number. It can be seen that uniform is significantly worse
than either of the others. Furthermore activity weighted sampling performs better than
the theoretically derived optimal sampling. System matrix: [0.3,0.1;0.4,0.8], activity

concentrations: [1,9]
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Appendix A

Calculations

A.1 Monte Carlo Variances

After defining the model, it is possible to calculate Monte Carlo variances for it. To do
this, let us consider once again 57, the signal measured by L;. Each individual virtual
particle can be assigned a detected weight ¢;, which describes how much of that particle is

picked up by L;. In our simple case, this can only be 0 or the total weight of the particle.

N
Si=> a (A.1.0.1)
i=1
Now, by the definition of variance we can write:
N

0°S1 =Y (g — 1)’ (A.1.0.2)

i=1

where q is the average weight of detected particles, which is by definition

1 & 1
7= % 1'21% = NSH (A.1.0.3)

substituting this into (A.1.0.2) yields:

e N S, 2_ N , S, N N S, 2
(551—2 qi—ﬁ —Zqi _2NZ%+Z N (A104)
i=1 i=1

i=1 =1

once again making the substitution (A.1.0.1):
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0’Si =Y g - = = S| =L — (A.1.0.5)

which is the traditional form of Monte-Carlo variance

Signals detected by different LORs are not independent, since the number of particles
going from a specific voxel to different LORs are correlated. This means that there are
non-zero covariances between different LOR counts. S; can also be defined in a manner

analogous to (A.1.0.1):

N
Sy =Y pi=Np (A.1.0.6)
=1

where p; are the detection weights assigned to Ls. Now, from the definition of covari-

ance we can write:

N

0°5155 = > (4 — ) (pi — D) (A.1.0.7)

i=1
Now substituting in from (A.1.0.1) and (A.1.0.6), we get:

S159
N

N
0%518y = ) qipi — (A.1.0.8)
1=1

in this model no particle can be detected by more than one LOR, p; and ¢; can not be

non-zero simultaneously, so the first term is zero. This means that:

S159

6258y = — N

(A.1.0.9)
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A.2 Hypergeometric Sums

(2.2.0.4) can be re-arranged to give:

= 1/n\ , ek meinem1 (n—1)! p \"
i Z 1 — = y™np (1 — — A.2.0.10
ymzkzl k(k)p A=p)" " =y"np (1 =) 2k (n— R \T—p ( )

To show that the sum on the right is equal to ,[7,

/N

{1,1,1-@;{2,2};&), we can

start from the definition of the generalized hypergeometric function as in [8]:

—l=

—~
@

S

N—

~

~

F,({a1,...,a,};{b1,...,b,};2)

(A.2.0.11)

I
I
. -
|1
S
b@‘
:‘_/
=| ¥

<
Il
—

Where (a), is the Pochhammer symbol (rising factorial notation) defined by:

1 ifl=0
(a), = q1-1 (A.2.0.12)
"\ Ma+i ifl>1
Note that from the above, (1), = ! and (2), = (I + 1)!

From the above definitions, we can expand the hypergeometric term:

Fq({l,l,l—n};{Q,Q};%>=Z< )’“8 El)_") k;_<p§1)k:
00 00 k
> g (21) = S (4)

k:0

(A.2.0.13)

0

The above expression has several important properties. For k > n > 1, (1 —n), =
k

I] (j —n) =0, therefore the sum only has to run up to n — 1 instead of co. Furthermore,
j=1

for all of these value, the terms (j — n) are negative as well as the p — 1 terms; a (—1)"
multiplier for both expression will make them positive. Making these re-arrangements

and introducing the index i = k + 1 we get:
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In the above equation (—1)"' (1 —n), , = ((Zj)),' (this is only true for indices 1 <

i < n, which are exactly the indices that appear in the sum). Finally by noting that
, i—1 i1
(—1)"! (ﬁ) = <ﬁ> , We can write:

3 CUT It e (1) ey L (1)

i1 (A.2.0.15)
o (1110 2202 )

Comparing this to (A.2.0.10) proves the initial proposition that

i - L(n k n—k n—1 p
¢ — 1-— =y"np(1— F,({1,1,1 —n};{2,2}; —
ym;k(k)p( p) yi'np (1 - p) pq({, 1-n}i{2,2) o7
(A.2.0.16)
From the above derivation it is clear that extending the arguments to
oFy ({1, 1,1,1 —n};{2,2,2}; p%l) simply multiplies every term in the sum by %, and
so (2.2.0.5) gives:

' 5 () (e () 5 () -
(¥’ np (1 —p)" ' F, ({1, 1,1,1 —n}:{2,2,2}; ﬁ)

(A.2.0.17)
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A.3 Probability Density Functions

Given an arbitrary probability density function f(z), by definition we have the normal-

ization property:

7f(w)dfv =1 (A.3.0.18)

The definition of the mean: -
7xf(x)dx =/ (A.3.0.19)

and variance: R
7 (z = p)* f(z)de = o (A.3.0.20)

multiplying (A.3.0.21) by u and subtracting from (A.3.0.19), we get:

/ (x — ) f(x)de =0 (A.3.0.21)

—00
The above equations can be used to derive the value of the non-central second moment

around an arbitrary value a:

/ (z— a)? f(x)dx = / (@ — 1) + (- ))? f(x)de =
- o (A.3.0.22)

02+(M—a)2+2(ﬂ—a)/(fﬁ—ﬂ)f(fﬂ)dx:UQJr(u—a)Q

—00
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