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Kivonat 

 

 A diffúzió-súlyozott mágneses rezonancia képalkotás segítségével információ 

nyerhető a vizsgált minta, jellemzően az agy, vízkompartmentjeinek lokális diffuzibilitásáról, 

illetve a diffúziós irányok valószínűségi eloszlásáról. Az így nyert információ jól jellemzi a 

vizsgált rendszer strukturális felépítését, és integritását. A kapott információ értelmezése 

bizonyos szempontok szerint a mai napig nyitott kérdés. 

 Ilyen kérdés a b paraméterrel jellemzett, vizsgálni kívánt diffúziós sebesség és a 

jelintenzitás kapcsolata. A szokásos irodalmi értelmezésben a különböző b értékekénél 

mérhető jelintenzitás mono-, lasabb diffúzió, azaz magasabb b értékek figyelembe vételével 

pedig biexponenciális függvény szerint változik. Ezen biexponenciális viselkedés egy gyors 

és egy lassú komponensre osztja a jelet, és ezen jelkomponenseket a sejten belüli és a sejten 

kívüli vízterekkel szokás azonosítani.  

 Ez az azonosítás azonban nem teljes körűen elfogadott. Több bizonyíték is utal arra, 

hogy egy vízterű kompartmentekben is előfordulhat biexponenciális jeleloszlás, faleffektusok 

következtében. 

 Diplomamunkám során megvizsgáltam a jelintenzitás és a b érték közöti összefüggést 

egy klinikai scanneren, különféle összeállításokban. Megvizsgáltam a falhatást 

makroszkopikus és mikroszkopikus fantomok esetében, és kimutattam, hogy egy 

áthatolhatatlan fal hatására egy víztérben is kialakul egy nem monoexponenciális jel.  

 Megvizsgáltam a jel viselkedését egy kétkomponensű rendszerben, vörösvértest-

szuszpenzióban. Eredményeim alapján kijelenthetem, hogy az intra-, és extracelluláris 

komponensek aránya hatással van a jelre.  

 Végeztem méréseket egy emberi agyban is. Megállapítottam, hogy a jel b-függése 

eltérő az agy különböző fehér és szürkeállományi területein. Az alkotott kép minőségéről 

megállapítottam, hogy erőteljesen függ a b értéktől. 

 



 

Abstract 

 

 Diffusion-weighted magnetic resonance imaging is a tool for extracting structural and 

integrity information from the investigated compartment, usually the brain. This is done by 

measuring the local diffusibility of water, and the probability distribution of diffusion 

directions. The precise interpretation of obtained data is still an open question in many regards. 

 One such question is the relation between the measured signal intensity, and the 

investigated diffusion speed. In the general literary interpretation, the signal behaves 

exponentially with regards to the diffusion speed parameter, b. On fast diffusion speeds, 

corresponding to low b values. the signal is monoexponential. When measuring with high b 

values of up to 5000 s/mm2, that correspond to low diffusion speeds, a second signal 

component arises, leading to a biexponential diffusion. The two signal components are 

associated with extra-, and intracellular water compartments. 

 This association carries in it a priori assumptions, and is thus not accepted by all 

researchers in the field. Biexponential signal behaviour has also been observed in single 

compartment systems, due to barrier effects.  

 In my master's thesis, I explored the connection between signal intensity and diffusion 

speed in a clinical scanner. I investigated barrier effects in micro-, and macroscopic phantoms, 

and found that the presence of an impenetrable barrier influences the non-monoexponentiality 

of the signal.  

 I investigated the signal behaviour in a two compartment system of red blood cells in 

saline solution. The ratio of intra-, and extracellular water has an effect on the signal 

behaviour.  

 Conducting measurements on a human brain, I found that the b-dependent signal 

intensity differs in grey and white matter. The quantification of structural information, the 

fractional anisotropy, also changes with the b value. 
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Chapter I: introduction 

 

 Magnetic resonance imaging is a topographical, three dimensional, non-invasive 

imaging method based on a resonance phenomenon. Its subset, diffusion-weighted, or 

diffusion-attenuated imaging can return structural information by measuring the diffusibility, 

both in speed and probability distribution, of water in the investigated tissue, generally the 

brain.  

 In clinical practice, only one diffusion speed is measured. The diffusion speed is 

characterized by the b value, a composite of all pulse parameters. The higher the b value, the 

lower the investigated diffusion speed. For everyday clinical use, b=800-1200 s/mm2. If more 

than b value is used to measure diffusion, the there will be an association between the 

intensity of the measured signal and the diffusion speed. On b values of less than 3000 s/mm2, 

this function is monoexponential. When measuring with b of up to 5000 s/mm2, a second 

signal component arises, leading to a biexponential signal behaviour. 

 Based on phantom and in vivo measurements, these two signal components are 

generally associated with extra-, and intracellular water compartments for the fast and slow 

signal, respectively. This association, however, carries within it an a priori assumption 

regarding the origin of the signal.  

 New research, as detailed in Chapter V, shows that biexponential signal can arise in a 

single compartment due to the interaction of excited spins with the wall of the compartments. 

This is called the barrier effect. In my master's thesis, I aimed to find out if this effect can 

arise in micro and macroscopic systems when measured with a standard clinical scanner.  

 For my master's thesis, I also investigated the relation between intra and extracellular 

water compartmentalisation and the signal component behaviour, using saline solution of red 

blood cells.  

 The effect of multi-b measurements on fractional anisotropy maps of the human brain, 

as well as signal intensity in certain parts of the brain, was investigated as well. 

 The aim of my master's thesis is not to deliver a definitive answer about what causes 

the biexponential signal behaviour, but to demonstrate, that in a 3T clinical scanner, a non-

monoexponential signal behaviour can arise from both volumetric association and barrier 

effects.  
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Chapter II: The physics of magnetic resonance imaging 

 

 II.1: The magnetic moment 

 

 Magnetic resonance imaging (henceforth: MRI) is based on a quantum mechanical 

property of all nuclei, the spin, or angular momentum, represented by I
r

. Spin is best 

visualized as the rotation of the particle along its own axis. The absolute value of spin as a 

vector value is derived from the spin quantum number, represented by I, in the following way 

[1]:  

 )1I(II += h
r  (II.1) 

 Protons and neutrons, the particles that form a nucleus both have an absolute spin of 

±1/2. It does not follow, however, that the spin of a nucleus is the sum of the spins of its 

protons and neutrons. Protons and neutrons have a tendency to form pairs in the nucleus. This 

results in nuclei having less observable spin than what the number of neutrons or protons 

would suggest. The spin of nuclei of the elements most abundant in the human body displayed 

in Table I: 

 

Nucleus Spin Approx. atomic 
percentage in 
human body 

1H +1/2 63% 
12C 0 12% 
13C -1/2 0% 
14N +1 0,58% 
15N -1/2 0% 
16O 0 24% 
17O 5/2 0% 
19F +1/2 0,0012% 

Table 1: Spin values in the human body 
 

 As evidenced by Table 1, most methods relying on spins to image the human body 

will be using the 1H nucleus. Coupled to the spin is another property, the nuclear magnetic 

dipole moment: 

 Iγ=µ  (II.2) 

 )1I(I +γ=µ=µ h  (II.3) 
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The dipole moment is a vector value observable when the spin is placed in an external 

magnetic filed. The coupling characterised by the γ gyromagnetic ratio. For hydrogen, γ is 

42.58 MHz/T. 

 In a magnetic field, a nucleus with a non-zero µ, thus a non-zero spin, will behave like 

a rotating magnet, or a current loop. The axis of this rotation will be varying on many factors, 

but the vector component that is parallel to the external magnetic field can be described easily. 

The conventional notation holds that the vector of the external field points into the z direction: 

 IzBB 00 =  (II.4) 

 Since µ is a quantum mechanic property, its z component can only take distinct values:  

 γ=µ hIz m  (II.5) 

 where mI is another quantum number, the magnetic quantum number. This property of 

the nucleus can have the following 2I+1 discreet values [1]:  

 mI=-I,-I+1,....0,....I-1,I (II.6) 

II.2.: Spin distribution and resonance 

 

 A discreet number of states implies that there is a property of the nucleus that changes 

with these states. In an extant external magnetic field, this property is energy.  

 Modelling the spin of 1H with a bar magnet, we can derive that its energy will only be 

affected by the magnetic field if the angle between its axis, µ, and B0, is not zero. With mI 

values of ±1/2, this hold true, since we can calculate the angle between the two vectors via the 

following equation[2]: 

 








+
=









µ
µ=θ −−

)1I(I

m
coscos I1z1  (II.7) 

 o77,54=θ  

 Since this angle is not zero, it follows that there will be two distinct orientations, and 

thus, two distinct energy states. The orientation is either described as "pointing upward", or 

parallel with the magnetic field, or antiparallel, or "pointing downward", as illustrated on 

figure II.1: 

 
Figure II.1: Parallel and anti, parallel spin orientation [2] 
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 The energy difference between the two states can be calculated in the following 

way[1]:  

 0I0 BmBE hγ−=⋅µ−=  (II.8) 

 2BE2BE 00 hh γ=γ−= ↓↑  (II.9) 

 0BEEE γ=−=∆ ↓↑ h  (II.10) 

 These two energy states have a different population under normal circumstances, 

determined by the Boltzmann distribution, depending on the absolute temperature [2]: 

 kT

E

eN
N

∆

↓

↑ =  (II.11) 

 Solving equation II.11 for room temperature, where ∆E<<kT, the difference in the 

population of these two energy states can be calculated: 

 
kT2

B
NNN 0hγ≈− ↓↑  (II.12) 

 It follows from equation II.12 that there is an excess number of spins on the lower 

energy level. However, when these spins absorb photons of exactly ∆E energy, they will enter 

the higher energy state. This energy selective excitation is the basis of magnetic resonance. 

The frequency of the absorbed photons can be calculated via Planck's equation: 

 00 BBE γ=ϖγ=ϖ=∆ hh  (II.13) 

 As can be gained from equation II.13, the resonance frequency is dependent on the 

magnetic field. Thus, by changing the magnetic field, the resonance frequency can be changed. 

This effect forms the basis of three-dimensional imaging in MRI.  

 

II.3: The motion of the magnetic moment 

 

 To better understand the effects of the resonance, the dynamic behaviour of magnetic 

moments in an extant magnetic field must be described. A magnetic moment visualized as a 

bar magnet will experience torque in a magnetic field.  

 BN ×µ=  (II.14) 

Since torque is defined as the time derivative of angular momentum, it follows for equations 

II.2 and II.14 that [1]:  

 γ×µ=µ Bdt
d  (II.15) 

The solution to equation II.15 is [1]:  
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 ( )
)0()t(

)tsin(0)tcos()0()t(

)tsin()0()tcos()0()t(

zz

0x0yy

0y0xx

µ=µ

ϖµ−ϖµ=µ

ϖµ+ϖµ=µ

 (II.16) 

 ti
yx

0e)0()t(i)t()t( ϖ−
++ µ=µ+µ=µ  (II.17) 

 The behaviour described by equation II.17 is a precession, where the frequency of 

precession, also called Larmor frequency, is equal to ω0=γB0. This is the same frequency 

described by equation II.13. The magnetic moment rotates around the axis of B0 the way a 

gyroscope tumbles around its own precession axis: 

 
Figure II.2: Visualisation of precession [3] 

 

 The effect of a resonance excitation can be understood as flipping the axis of 

precession upward, so that it points in the same longitudinal direction (z), as the magnetic 

field. The energy required for the resonance phenomenon is in this description delivered via 

an oscillating magnetic field, denoted as )t(B1  that oscillates with the resonance frequency, 

and is perpendicular to the original field. Describing the movement of the magnetic moment is 

a standard coordinate system becomes complicated under such circumstances. Therefore, the 

usual method is to switch to a rotating frame of reference. If the rotational frequency of this 

frame of reference is ω, then the orthogonal unit vectors of ex ey ez are transformed into the 

new unit vectors of ex' ey' ez' in the folloqing way [1] [2]:  

 

zz

xyy

yxx

e'e

)tsin(e)tcos(e'e

)tsin(e)tcos(e'e

=

ϖ+ϖ=

ϖ−ϖ=

 (II.18) 

Since )t(B1  described above has only one nonzero component, )tcos(BB 1x1 ϖ= , there will 

be a new effective magnetic field, where the equation of motion for the magnetic moment, 

described in the new coordinate system,  is [1] [2]:  

 ( ) ( )( )2B'eB'eBdt
d

1x0zeff +γϖ−γ×µ=γ×µ=µ  (II.19) 
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The effect described by equation II.19 leads to a shift in the axis of precession from the z axis 

towards the x'-y' plane.  

 

II.4: Free induction decay 

 

 Previously, the behaviour of a magnetic moment was described. Macroscopically, only 

the sum of these momenta, the bulk magnetisation, can be measured: 

 ∑µ=
N

1

)t,r(
V

1
)t,r(M  (II.20) 

 The shift in the axis of precession can now be understood as introducing a measurable 

net magnetisation along the x'-y' plane into the system. This shift is caused by the )t(B1  field, 

and switching that field of results in the system returning to its base state, where the 

magnetisation is parallel to the B0 field.  

Free induction decay phenomenon describes the movement of the magnetisation vector after it 

has been completely shifted into the x-y plane. Such a rotation is called a 90°pulse, achieved 

by a radiofrequency excitation of 1Bt γπ= duration. The magnetisation vector is 

perpendicular to the z axis after the field has been switched off, and returns to its original 

alignment in an oscillating and precessing motion: 

 
Figure II.3: The tip of the magnetisation vector during free induction decay [3] 
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II.5: The Bloch equations 

 

 The speed at witch the magnetisation reruns to its base state, also called relaxation, is 

dependent on several factors, and can be characterized by two time constants. 

 The magnetisation vector is generally separated into longitudinal magnetisation, 

parallel to the B0 field, thus also z, and the transverse magnetisation, in the x'-y' plane.  

 Longitudinal magnetisation relaxes due to spin-lattice interactions. The higher energy 

state is an unstable equilibrium point, where an ideal spin without any interactions could 

remain indefinitely. However, any excited spin is surrounded by nonexcited spins, its so 

called lattice, with which it interacts. This lattice acts as a heat bath, and attempts to 

thermalise the excited spins, returning them to the stable equilibrium point of lower energy. 

The speed of this thermalisation is dependent on the strength of spin-lattice interaction. A 

tight lattice, like a solid will have a quick relaxation, while a loose lattice will have a slower 

relaxation. The time constant of spin-lattice relaxation is denoted as T1, and defined as the 

time needed to reach 1-(1/e)≈63% of the original longitudinal magnetisation after the 

magnetisation vector has been flipped to the x'-y' plane by a 90°excitation.  

 While the loss of longitudinal magnetisation is a loss of energy, the loss of transverse 

magnetisation is a loss of phase coherence. Ideally, a packet of excited spins will have the 

same phase, or in other words, will travel as one group in the x'-y' plane. Spins in motion are 

however themselves sources of magnetic fields, as are surrounding electrons, and thus, every 

spin of this packet experiences a different field, and has a different phase. After a time, this 

phase decoherence leads to a loss of net magnetisation in the x'-y' plane. The time constant, T2 

is defined as the time it takes the transverse signal to diminish to 1/e≈37% of its original 

strength. The spins and electrons of the surroundings are not the only cause for field 

inhomogeneities. The original B0 field is also never fully homogeneous. The net effect of 

intrinsic and external field inhomogeneities is defined with the time constant of *2T , calculated 

as inh2
*
2 T1T1T1 += . 

 The dynamic behaviour of the transverse and longitudinal magnetisation is described 

by the principal equations of MRI, the Bloch-equations. After a simple 90°flip of the 

magnetisation into the x'-y' plane [1] [2]: 

 

2
0

1

z0z

T

M
BMdtMd

T

MM
dt

dM

⊥
⊥⊥ −×γ=

−=
 (II.21) 



8 
 

II.6: Basic pulse sequences 

 

 Using excitation of different angles and in different planes, diverse information can be 

extracted from a packet of spins. 

 In inversion recovery, or IR sequences, the longitudinal magnetisation if flipped in the 

opposite direction using a 180° pulse along the z axis. The longitudinal magnetisation thus 

starts as a negative value, and builds up back to its original strength, passing the zero point. A 

measurable component in the form of transverse magnetisation is introduced TI (inversion 

time) after the original z-axis 180°flip, in the form of a 90°rotation into the x'-y' plane. The 

net signal is governed by the diminishment and reappearance of the longitudinal 

magnetisation, and thus, by the T1 time parameter. IR is an easy method to measure the T1 if a 

given tissue.  

 Spin echo (SE) sequences are used to measure T2. As discussed, a spin packet will lose 

its coherence as it travels in the x'-y' plane. Some of the spins travel faster, some slower. This 

loss of coherence gradually weakens, and, when decoherence is total, destroys the signal. If. 

however, after a τ time, a 180°flip on the x'-y' plane is introduced, then the spins now travel in 

the opposite direction. This causes the fast spins to catch up with the slower ones, resulting in 

a gradual build-up of the signal. Once all spins catch up, they are once again one packet, and 

the signal strength is equal to the original. The catch-up occurs at TE=2τ echo time. Since the 

spins will now once again lose coherence, another 180°flip can be introduced, and such 

multiple flips are called a multiple echo sequence [4].  

 
Figure II.4: Spin echo sequence [5] 
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 T2
* can be measured by gradient echo sequences. Here, dephasing is achieved by 

switching on a gradient that heavily alter phase, and thus quickly eliminates the signal by 

destroying coherence. If the same gradient is applied later in the opposite direction, the 

opposite effect is achieved, and the spins regain their coherence. Due to inhomogeneities in 

the external field, this rephasing is incomplete, leading to a signal loss governed by T2
* 

 
Figure II.5: Gradient echo achieved by the readout gradient [5] 
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Chapter III: MRI in practice 

 

III.1: Instrumentation 

 

 The energy difference between the two energy states of excited and nonexcited spins is, 

as previously shown, dependant on the external magnetic field. The bigger the external field, 

the greater the difference, and thus, the greater the signal intensity. For this reason, clinical 

scanners have a strong B0 external magnetic field ranging from 1T to 7T, with 3T machines 

being the most common. This external field is generated by a liquid helium cooled 

superconducting electromagnet of NTi or Nb3Sn material [6].  

 Such a field will be inhomogeneous by its very design. These inhomogeneities are 

corrected using shimming, which done by using smaller, localized magnets, resistors, or 

magnetized iron elements. A shimmed magnetic field will be homogeneous to its eights-to-

twelfth degree.  

 A totally homogeneous field will result in one resonance frequency over the whole 

sample. For three dimensional localisation this frequency must vary from place to place. This 

is done by introducing fields of known strength and direction, via the gradient coils. The 

gradients are linear, thus the field strength can be described as B(r)=G(r)·r. 

 The localized spins have to be excited. Radiofrequency coils are requires to introduce 

photons of appropriate frequency into the sample, and thus cause excitation. After the 

excitation stops, the magnetisation will return to its base state, the time dependence governed 

by relaxations. The change in magnetisation generates current in the receiver coils, from 

which the signal is then formed. More than one receiver coil is needed for three dimensional 

localisation. The sensitive fields of these coils generally overlap, allowing the localisation to 

be encoded by the sensitivity of overlapping coils. This is the basis of sensitivity encoding, or 

SENSE.  

 

III.2: Spatial localisation and k-space 

 

 For three dimensional image formation, only specific voxels can be excited and 

measured. The spoiling of a homogeneous field with select gradients introduces such a 

selection.  
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 First, the measured slice, or z-oriented component of the sample must be selected. This 

is done by introducing a gradient field parallel to the B0 field. The strength of the slice 

selection gradient is defined by the desired resonance frequency of ω, and the selected z slice:  

 ( ) SS0 G/Bz −γϖ=  (III.1) 

 Ideally, a z slice could be infinitely thin with infinitely strong box function gradients. 

In reality, gradients are of finite strength, and are sloped, resulting in a general slice thickness 

of 1-2 mm. Fixing the z coordinate leaves the x-y plane to be localized, via a resonance 

frequency shift of ∆ω.  

 Localisation along the x-y plane, or x  is referred to as phase and frequency encoding, 

and is in essence a Fourier transform. The solution of the Bloch-equations for transverse 

magnetisation, with relaxations ignored, yields the following complex form in the absence of 

gradients [1] [2]: 

 )tiexp()x(M)t,x(M 00 ϖ=⊥  (III.2) 

 Dependence on location is a result of the excitable spin density ρ being dependent on 

the location in most samples. When a gradient of G(τ) is switched on in the x-y plane for a t 

time, the solution to (II.21) changes: 

 ))t,x(iexp()tiexp()x(M))t,x(tiexp()x(M)t,x(M 0000 ϕ⋅ϖ=ϕ+ϖ=⊥  (III.3) 

 ( ) ∫∫∫ ⋅π=ττγ=ττ∆γ=ττϖ∆=ϕ
t

0

t

0

t

0

x)t(k2xd)(Gd),x(Bd,x)t,x(  (III.4) 

 ∫ ττπγ=
t

0

d)(G2)t(k  (III.5) 

 )x)t(k2iexp()tiexp()x(M)t,x(M 00 π⋅ϖ=⊥  (III.6) 

 The magnetisation described by equation III.6 generates a voltage in the receiver coil 

that will be proportional to the magnetisation. From this, the signal can be gained by 

removing the part caused by the known ω0 component. Thus, the signal S(t) is a Fourier 

transform of the spin density ρ: 

 

 xd)x)t(ik2exp()tiexp()x(Mxd)t,x(Mc)t(U 00∫∫ π⋅ϖ=⋅= ⊥  (III.7) 

 xd)x)t(ki2exp()x()tiexp('c)t(U 0 ∫ πρϖ⋅=  (III.8) 

 xd)x)t(ki2exp()x(''c)t(U)tiexp()t(S 0 ∫ πρ=ϖ−=  (III.9) 
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 The integral in equation III.9 is a Fourier transformation. Thus, MRI is in essence a 

Fourier transform, with the signals phase and frequency information corresponding to the 

spatial location of the excited voxel. A k(t) vector in k-space corresponds to a spatial location 

in real space. The sampling of the phase-frequency encoding k space determines the spatial 

readout sequence, and thus the reconstruction algorithm for an image. 

 

III.3: Sampling k-space 

 

 The order of magnitude for T1 is 400 ms-1 s, while for T2, its 40-200 ms. If in a 

256×256×128 voxel volume, which is standard for MRI, each voxel is weighed once for T1, 

the whole measurement would take 8400000 seconds, or roughly 97 days. Patients only 

tolerate the circumstances of an MRI measurement for upwards an hours, thus more than one 

voxel, more than one k-space point must be read out at one time. A readout pattern for a 

single excitation is called a trajectory in k-space. The form of a trajectory depends on 

gradients. 

 The simplest to visualize, and fastest trajectory is the so called EPI, or echo-planar 

imaging sequence. In essence, the k space is read out row after row, with readout directions 

flipping every column change. This is done by reversals of the gradient in the x direction, 

known as the frequency-encoding gradient. This will produce a series of gradient echoes, an 

echo train. The y directional, or phase-encoding gradient can be held constant. The sampled 

points are equidistant, which is very beneficial to image reconstruction, but due to the 

gradient echo, the signal strength is governed by T2
*, necessitating a very quick readout. 

During our measurements, we used EPI sequences.  

 An equidistant readout requires boxcar form gradients. If, however, sinusoidal 

gradient behaviour, which is much easier to control, is used, then the readout trajectory will 

be a spiral on the k-space. This readout technique is not hindered by T2
* relaxation, but due to 

the non-equidistant sampling of k-space, image reconstruction is very difficult.  

 
Figure III.1: EPI gradients and k-space sampling [5] 
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Chapter IV: Diffusion weighted imaging 

 

IV.1: The physics of diffusion 

 

 Diffusion is in its broadest definition, the random movement of matter governed by 

either temperature, or a gradient in concentration. In MRI, we only consider the former 

definition, the so called molecular diffusion. 

 Molecular diffusion postulates that at any nonzero temperature, particles will move in 

a random walk manner with the average displacement dependent on the temperature, but the 

net displacement being zero. This random movement leads to a mixing of the particles, and is 

not to be confused with flux, which is an ordered net movement into one direction. 

 As previously noted, molecular diffusion is a random process, necessitating a 

statistical description. This is best done first in one dimension. If at t=0, there are N molecules 

in a single volume, and no molecules anywhere else, then the particle density function p(x,t) 

is described by the diffusion equation: 

 
x

D
t 2

2

∂
ρ∂=

∂
ρ∂

 (IV.1) 

D denotes the diffusion coefficient, which depends on temperature in the following way:  

 )RT/Eexp(DD A0 −=  (IV.2) 

D0 is the diffusion coefficient at infinite temperature, while EA is the activation energy of the 
process. At 25oC, the diffusion coefficient of water in an unrestricted space is 

123 smm1027.2D −−⋅≈ . [7].  
 

The solution to equation IV.1 is a Gaussian function that describes the probability of any 

given particle being in the voxel x at the time of t: 

 )Dt4/xexp(
D4

1
)t,x( 2−

π
=ρ  (IV.3) 

In a more generalized form, this function describes the displacement probabilities during any 

given time, that is, the probability of any given voxel along the x avis containing a given 

number of molecules. 

 The Gaussian nature means that we can calculate the mean square displacement over a 

given time of ∆: 

 ∆⋅⋅= D2x 2  (IV.4) 
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 With the previous equations, we assumed diffusion in one dimension. However, if 

there is no restriction in the medium, if the only equation governing the system is IV.1, then 

we can describe the behaviour in 3 dimensional systems the same way. In any given direction, 

said equation describes the behaviour, leading to a 3 dimensional Gaussian function. 

Representing the probability function with a colour code, we can represent the three 

dimensional function in two dimensions[8]:  

 
Figure IV.1: The displacement histogram[8] 

 
 Figure IV.1 shows the colour coding representation of equation IV.3 along a given r 

axis. The figure also assumes a histogram distribution, not a continuous one. Using the 

convention above, and applying it to three dimensions, we get:  

 
Figure IV.2: Three dimensional representation of displacement 

 
 Figure IV.2 shows the probability in an isotropic, three-dimensional space. The deeper 

the colour, the more particles diffuse to that voxel. The Gaussian diffusion along any axis 

results in a symmetrical profile, with the centre having the highest probability. Any 

imperfection and anisotropy in the system will alter the above described behaviour.  
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IV.2: Diffusion in biological tissue 

 

 In section IV.1, we only discussed the non-restricted diffusion of free water in a 

limitless space. This description is insufficient for biological systems. Tissue are usually not a 

homogeneous, but heterogeneous, and therefore restrict the movement of diffusing particles. 

Generally, the more heterogeneous the tissue, the higher the restriction, resulting in lower 

diffusion speeds. The water in a tissue is also not only free water, but a significant part of 

tissue water will be bound as a solvent shell to proteins, ions, and metabolic products. This 

bonding results in the inside of cells showing behaviour akin to gelatine. The cell membranes 

act both as a restriction, completely eliminating the movement of certain coupled water 

molecules through them, and as a hindrance, slowing the movement of water through them. 

All the above restrictions result in the diffusion coefficient of water being two-to-ten times 

lower in tissue than in an unrestricted medium [9].  

 The heterogeneity of the tissue is not random, biological systems have several levels 

of order to them. The easiest way to model this order is to imagine a system of tubes. These 

are densely packed, but do not touch each other. Inside the tubes, water can very easily diffuse 

along their axis, but will meet a restriction when moving to the tube wall. Outside the tubes, 

water can move around them, but suffers hindrance when diffusing towards or into the walls. 

This simple model can with some variance adequately represent the axons of neurons, with 

the water in the tubes representing intracellular water, and the compartment outside the tubes 

representing extracellular water. 

 
Figure IV.3: single-wall model of neurons, with added internal restriction via filaments [8] 

 

Using the representation established in the previous section, we can visualize the diffusion in 

such a restricted system:  
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Figure IV.4: Diffusion with one axis of restriction [8] 

 
Figure IV.5: Diffusion with two restricted axii [8]  

 

Figure IV.4 shows a diffusion profile with a single group of tubes, where there is a strong 

restriction in one direction, and none in the other directions, while Figure IV.5 shows the 

profile with two crossing tube groups, and the resulting restriction along two directions.  

 

 The aforementioned a model can be further refined by setting the walls as semi-

permeable, in which case there is no absolute compartmentalisation of the water, and by 

setting the walls as non-permeable, in which case the system now contains two distinct water 

compartments. In reality, the tissue offers much more complex restrictive and hindering 

characteristics, with both intra and extracellular space containing many fibres, molecules, and 

tissue fragments that interact with free and bound water, and alter the diffusion profile. 

 The research of my diploma thesis pertains in part to distinguishing and verifying the 

various aspects of restriction and hindrance in MRI signal, both in vivo and in vitro.  
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IV.3: Diffusion-based imaging 

 

 In section IV.2, we showed that the heterogeneous nature of a tissue is represented in 

its diffusion profile. If we can image and map the diffusion profile, we can gather information 

about the heterogeneities. We can achieve this goal via diffusion based magnetic resonance 

imaging.  

 As described in the previous chapters, in MRI, all voxels can be assumed to have a 
different local magnetic field, and thus a different local resonance frequency. If a spin moves 
from one voxel to the next, it will experience a change in frequency, and therefore, a different 
phase. To describe this with a one-dimensional model, we must first quantify the change in 
the local field. We assume that the gradient of the field is linear in the investigated direction: 
dG/dx=G. If the movement speed is constant, then the spins movement is a random walk, and 
it can move δ distance in each ε=±1 step, needing τ time. Therefore, the field it experiences 
after n steps is [1]:  

 ∑
=

εδ+=τ
n

1k
kG)0(B)n(B  (IV.5) 

 )0(B)n(B)n(B −τ=τ∆  (IV.6) 
The phase change after one step is 

 ττ∆γ−=τφ∆ )(B)(  (IV.7) 

After N steps, it is: 

 ∑∑∑
= ==
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G)n(B)N(  (IV.8) 

 The longer the diffusion, the more phase change the spin suffers. If we consider not 

one spin, but a group of spins diffusing independently of each other, then the change is phase 

must lead to a loss of phase coherence. Using the central limit theorem, we can calculate that 

the mean square of the phase is: 

 ττδγ=φ∆ /NG
3

1 332222  (IV.9) 

Where N3
τ

3 is the cube of the total time of the process, or t3. It can be shown that a phase 

change leads to the following effect on magnetisation:  

 ( )2expMM 2
0 φ∆−=+  (IV.10) 

Combining the two equations above, as well as T2 effects:  

 ( ) ( )2
33222

0 Ttexp6/NGexpM.)diff(M −ττδγ−=+  (IV.11) 

In a one-dimensional discreet model, the diffusion coefficient can be described with D=δ
2/2τ, 

leading to the following simplification: 

 ( ) ( )20 TtexpbDexpM.)diff(M −−=+  (IV.12) 
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Here, b is used to denote: 

 
[ ] 2

322

mm/sb

3/tGb

=
γ−=

 (IV.13) 

 The three dimensional case can be described by the same term. If we only consider the 

diffusion term, then the change of magnetisation can be described as a loss of signal, since our 

spin packets suffer a net loss of phase coherence. This signal loss can be used to quantify the 

diffusion parameters of the investigated area.  

 Previously, we assumed that the gradient the spins experienced arose from simple 

motion. To investigate motion along a certain direction, a gradient must be introduced along 

that direction. This can be done in a gradient echo sequence, or in a spin echo sequence. Since 

the spin echo sequence is the easiest to visualise, we will use it as an example. The SE based 

diffusion sequence was first proposed by Stejskal and Tanner in 1965 [10], giving it its name. 

Real life pulse sequences have many more parameters and complexity, but the idea behind all 

of them is the same. Similarly, the exact parameters of the b-value vary with the sequences. 

 
Figure IV.6: The Stejskal-Tanner spin echo sequence [1] 
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The sequence differs from a simple EPI spin echo sequence by the addition of the diffusion 

gradients, here incorporated into the slice select gradients. At t=0, the first diffusion gradient 

is applied for a δ time. This leads to a phase change that is dependent on the gradient strength, 

and therefore, the position of the excited spins. Second, a 180o radiofrequency excitation is 

applied, which reverts the change in phase caused by the first gradient. Third, at t=∆ time, 

another diffusion gradient is applied, resulting in a phase change similar to the first. After this 

sequence, spins that have not moved from the investigated voxel have experienced a 

diffusion-induced phase-shift, a phase-inversion, and a shift on the inverted phase. The net 

result is a shift of zero. However, if a spin has moved, then the first and second gradients it 

experienced were different, leading to a different shift the first and the second time. The net 

result is a net shift in phase. Due to this shift in phase, there is a loss of phase coherence in the 

spin packet of the voxel, thus a loss of signal. The stronger the diffusion along the gradient, 

the higher the distance travelled during the ∆ time period, and the higher the difference in 

phase shift at t=0 and t=∆, resulting in a higher net loss of signal. For the Stejskal-Tanner 

pulse sequence, the b value is given as [10]: 

 ( )3/Gb 222 δ−∆δγ−=  (IV.14) 

 It is evident, that the loss of signal is in itself not sufficient information. The loss of 

signal must be compared to the situation without applied diffusion gradients, or in other words, 

a b value of zero. Assuming the signal behaves exponentially with b, in accordance with 

equation IV.12: 

 )bADCexp(II 0S −=  (IV.15) 

Where IS is the signal intensity measured with the diffusion gradients applied, and ADC is the 

apparent diffusion coefficient. The change of the signal intensity due to the applied diffusion 

gradients is therefore. This signal is the diffusion-weighted signal: 

 )bADCexp(IIS 0S −==  (IV.16) 

 S can only have values between one and zero. All other values are considered noise. 

As previously described, the structure of an anisotropic medium is reflected in the diffusion 

profile. Thus any change is the structure can be mapped by measuring the diffusivity of water 

in the structure. This connection serves as the foundation of the medical use of diffusion 

imaging. Several diseases lead to changes in the microstructure of neuronal tissue, and these 

can be investigated in a diagnostic manner via diffusion imaging. [11] 
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 To get complex structural information by measuring diffusion, more than one direction 

has to be measured. This is done by applying gradients in different directions.. Using one, or 

few diffusion directions in the basis of the diffusion-weighted imaging (DWI) method. 

 Let us assume that we have a restriction in our imaged system. We retain the Gaussian 

nature of the diffusion, but we apply a restriction, or anisotropy in certain directions, as shown 

on Figure IV.4. For each direction, the value of the diffusion coefficient can be measured, and 

from these values, the diffusion tensor can be constructed. Methods that require a diffusion 

tensor to be calculated are called diffusion tensor imaging (DTI). A tensor describing a 

restricted gaussian function is a diagonal 3-by-3 matrix. This matrix will have six independent 

elements, necessitating the measurement of at least six independent directions. From the 

measured and calculated ADC values, we can compile the diffusion tensor as generalized 

towards the principal axes.  
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 Using the diffusion tensor, a simple quantifier of the diffusion strength, the mean 

diffusivity can be derived by taking the trace of the tensor. Calculating the eigenvalues gives 

us more information. Diffusion along any given direction can be described by the eigenvalues 

of the diffusion tensor:  
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 These eigenvalues represent the three largest diffusion coefficients. Due to the 

convention of matrix transformations, the above step can be understood as transforming the 

original Cartesian coordinate system of x,y,z into one of λ1 λ2 λ3 [12]. Using them, the 

diffusion displacement probabilities can be easily visualised either as an isosurface, or as a 

directional probability surface: 

 
Figure IV. 7: For top to bottom: Eigenvalues of a diffusion tensor; A: isosurface representation; B: 

direction probability representation  
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 The eigenvalues represent the anisotropy of the system, with the direction and size of 

the eigenvalues representing from the least restrictive direction to the most restrictive one. 

Using the eigenvalues, we can measure the anisotropy distribution of a given area, denoted as 

fractional anisotropy, or FA:  
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 Fractional anisotropy is a number form zero, denoting isotropy to one, denoting total 

anisotropy, or in other words, a single diffusion direction. If a volume has a highly ordered 

structure with a distinct direction, it will have a high FA. A set of highly ordered structures in 

the same direction is a connection of these structures. Such a structure is, for example, a 

bundle of axons. Thus, FA maps give us very good information about the interconnectivity of 

the brain. Since there are many connections, it is useful to colour code them, by coloring the 

largest eigenvectors orientation: red denotes left-right, green shows anterior-posterior, and 

blue shows superior-inferior: 

 
Figure IV.8: FA and colour coded FA [11] 
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Chapter V: b-dependent signal behaviour 

 

  In the normal clinical practice, diffusion measurements are usually carried out using a 

single b-value in the range of 800-1200 s/mm2. This corresponds to an ADC about 10-3mm2/s, 

which is the diffusion speed of slightly restricted water in tissue. Higher b values are more 

sensitive for lower ADCs, and thus slower diffusion. Measurements with one b value conform 

to exponential signal behaviour, as described in equation IV.15. 

 However, measurements with multiple b values can reveal a different behaviour. In a 

non-restrictive medium, where the diffusion probability is equally distributed along each axis, 

the signal is still a monoexponential function of b. However, in restrictive structures,low and 

high b values lead to a different behaviour, that can be described by the following equation 

[13]: 

 )bADCexp(f)bADCexp(fS fastfastslowslow −+−=  (V.1) 

 ADCslow and ADCfast are the apparent diffusion coefficients of the slow and fast signal 

components, while fslow and ffast represent the contribution of these components, with 

ffast+fslow=1. Describing the signal as two components description carries in itself the 

assumption that the signal arises from two compartments, and that there is little exchange 

between these two compartments.  

 In general, the two components are associated with the intra and extracellular water 

volumes of neuronal tissue. Measurements performed in rat brains resulted in 

ADCfast=(8.24±0.30)x10-4 mm2/s, and ADCslow=(1.68±0.1)x10-4mm2/sec, with ffast=0.8±0.02, 

and fslow=0.17±0.02 [14]. Measurements in human brains confirmed the approximate values 

of the rat brain ADCs and compartment weights [15].The fast ADC corresponds to the ADC 

measurable with a single b value in the 800-1200s/mm2 range. Since extracellular water 

diffuses more freely, it is assumed that the majority of the signal in single-b measurements 

comes from extracellular water. The average compartmentalization of neuronal tissue is 

however 80% intracellular and 20% extracellular volume. [15]. This discrepancy between the 

signal compartments and the volume compartments questions the assumption. 

 In a complex medium, the compartment weights are related to the anisotropy of the 

medium. In the human brain, the more anisotropic white matter shows more prevalent 

biexponential signal behaviour, while the less ordered grey matter has small fslow. An isotropic 

medium shows exponential behaviour, with no distinct slow compartment. 
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 Measurements conducted in [13] reveal the difference in behaviour: 

 
Figure V.1: Signal behaviour in isopropanol 

 
Figure V.2: Signal behaviour in grey and white matter 

 

 As evidenced by Figures V.1 and V.2, there is a strong correlation between the 

anisotropy of the signal and the anisotropy of the sample. Both figure are linear plots with 

regards to b, and natural logarithmic plots with regards to the signal. The logarithm of 

equation IV.15 is a linear function. As seen on Figure V.1, an isotropic sample, e.g. a vial of 

isopropanol, the plot is linear, thus the signal behaviour is monoexponential. Figure V.2 

shows non-linear (thus biexponential) plots both for grey and white matter with the plot for 

white matter being much less linear than that of grey matter. This corresponds to the structural 

differences, as exlplained above.. 

 Embedded in equation V.1 is an assumption of two water compartments that do not 

exchange spins with each other during the measurement. Equation V.1 is not  theoretically 

calculated, but a best fit approach to data obtained by multiple b value measurements. As such, 

there are numerous proposals to alter the equation and the assumption embedded therein.  

 A histological investigation of white matter reveals not two, but three different and 

well-separated compartments: the extracellular space, the intracellular space, and the myelin 

sheaths separating the two. Based on this assumption, a model can be constructed [16].  
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 The three compartments are absolutely separated, the permeability of each separating 

wall is set to zero. In this case, the intracellular water compartment impose strong restrictions 

due to its small size. Since restrictions are modelled with wall interactions, there will be  

monoexponential diffusion along the axis of the axon. Perpendicular to the axis, a Monte-

Carlo simulation of such a model reveals a two-component signal behaviour, with only one of 

them (the extracellular)dependant on b: 

 
Figure V.3: MC simulation in [16], [ms/µ2]=1000[s/mm2] 

 

 The myelin component contains spins in a fatty, gelatinous medium, resulting in a 

very fast T2 relaxation that overpowers the signal loss from diffusion, leading to no signal 

contribution. The intracellular component does not depend on b, while the extracellular 

component depends only monoexponentially on b. This model had been validated using 

formalin-fixed primate brains. 

 It should be noted, however, that [16] is based on the assumption that diffusion is 

Gaussian, hence the exponential behaviour. Thus, a non-exponential model can reject such an 

assumption, e.g. he signal can be modeled as a power series of b [17]:  

 ....bCbCbCCSln 3
3

2
210 ++++=  (V.2) 

 This mathematically derived interpretation of the signal is independent of model 

assumptions. Tthe authors found that the using only baseline, b, and b2 coefficients, the 

function fits well to data obtained in the b range of 50-2500 s/mm2: 



25 
 

 
Figure V.4: Fitting methods for ROIs shown in red [17] 

 
 It should be noted, however, that this is exactly the range where the monoexponetinal 

fit is usually considered to be sufficient. [17] 

 

 The assumption most connected to my thesis is that two signal components can arise 

in a single compartment, as well. Single-cell diffusion measurements give information about 

the very basic processes underlying diffusion imaging. Such measurements were conducted 

on squid giant axons, lamprey spinal chords, and oocytes of Xenopus genera frogs [18,19]. 

The results of these studies show strong signal contribution of intracellular water, and non-

monoexponential signal behaviour intracellularly. These studies, however do not necessarily 

reveal the basis of such signal behaviour. Even a single squid axon is a complex medium, 

with many intracellular bodies, e.g. membranes, mitochondria's, metabolic products and the 

cytoskeleton. Moreover, the diameters of the studied single cells (40-1000µm) are much 

bigger than that of a typical human axon (10µm). Therefore, the interpretation of results from 

theses studies is confounded by the significant size difference.  

 A more basic model requires the elimination of these internal and size-based obstacles. 

A 2003 paper [20] aimed to reduce the model to its absolute minimum, that of a single 

volume bordered by non-permeable walls. Thus, there is a single compartment without any 

internal restrictions, and any signal behaviour arises only from spin-spin and spin-wall 

interactions.  

 The volume can also be made to be dimensionless. The characteristic non-restricted 

diffusion length can be described as: 

 ∆⋅= ADCl char  (V.3) 
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 If the system has a size of l, the a dimensionless scalar can describe the ratio of the 

diffusion distance and the compartment size:  

 lADCll char ∆⋅==α  (V.4) 

 In an ideal Stejskal-Tanner pulse sequence, the diffusion-weighted Bloch equations, 

which are the generalised form of the Bloch equations containing  equation IV.11, can be 

solved analytically. The transverse magnetisation is then dependent on distances from the 

edge of the system. Intuitively, this can be described by seeing the centre of the system, where 

the edges are far, as a non-restrictive volume, where free diffusion can be used to describe the 

diffusion profile. Near to the edges, the spins will have their profile restricted, since diffusing 

in the direction of the edge, they will interact with the edge, bouncing of it. This behaviour is 

best described by the magnitude of said transverse magnatisation σ . The exact solution to the 

Bloch equations is dependent on the pulse forms. If in equation IV.14 , ∆=δ, the result is 

referred as Spin Echo, or SE in [20], while ∆<<δ  is referred as the narrow pulse estimate, 

NP.  

 In [20], two models are considered. A one-dimensional model with a compartment 

size of 2a, and a two dimensional cylinder. The gradient was perpendicular to the boundaries 

in both cases, and b was fixed so that bD0=1, where D0 is the unrestricted diffusion coefficient. 

The results are as follows: 

 
Figure V.5: Transverse magnetisation and diffusion coefficients 

 obtained in a one dimensional model [20] 
 

 Figure V.5  shows the behaviour of transverse magnetisation as a function of the 

position in the system (x/α) at different α values in the SE (solid) and NP (dotted) estimations. 

As can be observed, once the diffusion distance and the compartment size are comparable, 
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that is, α>1, the edge effect starts to arise. With the decrease of alpha, the difference between 

magnetisation along the boundaries and in the middle increases sharply. This difference in 

magnetisation leads to a change in the local signal. The average signal for the whole 

compartment can be described as: 

    )bDexp()1()bDexp(S 21 −ζ−+−ζ=     (V.5) 

 The values of the parameters for equation V.5 are shown in the table on the right side 

of Figure V.5. The contribution of the slow (D1) and fast (D2) compartments is heavily 

dependent on α. 

 Results for a two dimensional cylindrical model are similar. Here, the volume can be 

described by the radial distance parameter of p. Figure V.6 shows the same dependence 

structure as Figure V.5: 

 
Figure V.6: Transverse magnetisation as a function of compartment size in a 2D cylinder [20] 

 

 At small α, the centre of the cylinder displays uniform magnetisation much lower than 

the edge, with a steep increase between the two regions. As the value of α increases, the 

difference between the two regions diminishes, and at α>0.5, the difference in negligible, with 

the whole cylinder displaying the same magnetisation. The resulting biexponential signal has 

been verified in experiments by Milne and Condradi [21]. 

 NMR tubes of 160 µm and 50 µm inner radii were used in a 4.7T NMR machine at 

Oxford. NMR machines have the ability to measure very small samples in a very 

homogeneous magnetic field, and thus the result of [21] is only dependent on the 

compartment sizes, and the diffusion pulse parameters. With a δ of 3.0 ms and ∆ of 54 ms for 

the 50 µm cylinder and 138 ms for the 160 µm cylinder, the ratio of the characteristic 

diffusion length and the compartment, defined as rD0∆=α  was 0.2 for the smaller 
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cylinder and 0.1 for the larger. Measurements of the perpendicular diffusion signal capable of 

interacting with the barriers were conducted:  

  
Figure V.7: experimental proof for biexponential signals in a single compartment system [21] 

 

 Figure V.7 shows the signal behaviour on a logarithmic scale in both tubes. It is 

evident from the data that the signal behaviour in not monoexponenetial, and that the data 

from the b range of 0-2500s/mm2 shows a monoexponential behaviour in the form of the 

dotted line on the left. The cumulative contribution of the monoexponential part of the signal 

is in both cases more than 95%, meaning that the amount of spins carrying signal in the 

biexponential behaviour range is low. 

 Such a biexponential nature does not arise on the signal obtained by measuring the 

diffusion signal along the long axis of the cylinders:  

 
Figure V.8: Monoexponential diffusion along the axis [21] 
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 The spins described by Figure V.8 did not encounter any boundaries along the long 

axis, therefore their diffusion is free and monoexponential. 

 

 Based on [20] and [21], we wanted to test the behaviour of the signal in a clinical 

scanner. [20] and [21] only pertain towards microscopic structures where the diffusion length 

and the compartment size are comparable. We wanted to test is this effect arises under 

circumstances where the compartment is many orders of a magnitude bigger than the 

diffusion distance. The papers discussed above only discuss a single distinct compartment. 

We wanted to test how the signal behaves in a set of many distinct single volume 

compartments, that can be understood to represent axon bundles.  

 We also tested the volumetric association described in [18] and [19] with a simple 

medium that contained only two water compartments.  

 To verify the clinical use of such measurements and data, we conducted a multi-b 

measurement on one healthy volunteer.  

 The results of our experiments are detailed in the chapters below. 
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Chapter VI: b-dependent diffusion signal intensity and 

fractional anisotropy in the human brain 
 

VI:1: Fractional anisotropy as a function of b 

 

 The clinically used b-value discussed in chapters IV and V, ranging from 800 to 

1200 s/mm2, is based on practical considerations. For most clinical applications, such as the 

identification of tumours and changes in brain structure, such b-values are considered to be 

sufficient.  

 There are studies, however, that show better results, starker contrast in cases of brain 

infraction [22] and hepatocellular lesions [23], as well as increased sensitivity for detecting 

pancreatic adenocarcinomas [24].  

 Based on these results, we conducted an experiment on one healthy volunteer (26 y.o 

male). The volunteer had a pre-existing degeneration in his motor cortex, but was otherwise 

healthy.  

 Measurements were performed at the 3T Philliphs Achivea scanner of the Magnetic 

Resonance Research Centre (MRRC) of the Semmelweis University of Budapest, using an 8 

channel SENSE head coil. Diffusion was measured along 32 non-collinear, independent 

directions in accordance with the recommendations of Derek Jones [25]. We measured the 

diffusion using eight b values: 800 s/mm2; 1200 s/mm2; 1600 s/mm2; 2400 s/mm2; 

3200 s/mm2, 4000 s/mm2, 4400 s/mm2 and 4800 s/mm2. The field of view was 

240·240·140 mm, voxel size was 2·2·2 mm. 

 Data was exported from the scanner in DICOM format, then converted to N1fTI using 

MRICron [26]. These NIFTI files were analysed by using the FDT diffusion toolbox of FSL 

[27], following the common pipeline for the process [27]. Eddy current correction was 

performed on all images, as was brain extraction. Fractional anisotropy maps were created 

using the dfit tool. NIFTI images and fractional anisotropy (FA) maps were converted to 

MATLAB [28] matrices and later analysed that format.  

 We analyzed fractional anisotropy maps in three transverse planes along the z 

direction. These planes were: z=50 mm; z=70 mm, and z=90 mm.  
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Figure VI.1:The three planes of investigation 

 
 In the transversal plane z=50 mm, the fractional anisotropy images were the following: 

 

 
Figure VI.2:Fractional anisotropy maps for transversal plane z=50 mm at b values of 800 (top left); 

 1200 (top middle), 1600 (top right); 2400 (centre left); 3200 (centre middle); 4000 (centre right);  
4400 (bottom left); and 4800 (bottom right)  

 

 Figure VI.2 shows that the fractional anisotropy diminishes with higher b values. The 

stark contrast of the first map is greatly reduced by b=4800 s/mm2. The clearly visible 

connections between the anterior and posterior parts of the brain on the images taken with low 

b values cannot be seen on the maps taken with higher b values. The noise level increases 
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sharply with b. While on the first maps, the posterior medial part shows clear connections 

with high contrast, on high b values, the area is indiscernible from noise.  

 A visual inspection of the FA maps does not show the difference in fractional 

anisotropy as such. To analyze the difference, we calculated the difference between the maps 

corresponding to higher b values, and the map of b=800 s/mm2. These difference maps are 

show on Figure VI.3. The high difference values resulting from either the brain outline or not 

complete overlap, classified as absolute differences higher than 0.8 were removed. All images 

are greyscale images scaled from -1 (black) to +1 (white).  

 

 
Figure VI.3: Fractional anisotropy difference maps compared to b=800 s/mm2,for transversal plane 

z=50 mm 
at b 1200 (top left); 1600 (top middle), 2400 (top right); 3200 (centre left); 4000 (centre middle); 

 4400 (centre right); and 4800 (bottom right) 
 

 As seen of Figure VI.3, at all b values, the difference in the anterior-posterior 

connections are evident. At high b values, the dorsal-ventral connections show a marked 
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difference compared to the base image if 800 s/mm2. There is very little ordered difference 

between 800 s/mm2 and 1600 s/mm2, while both 1200 and 2400 show a difference.  

 We quantified the difference using three parameters. The average to the negative value 

differences (kneg), which shows the average FA decrease due to the change of b. The average 

of positive values (kpos) shows the FA increase, while the average taken over the whole FA 

range (kavg) shows a net difference in the contrast.  

b value of the compared image [s/mm2] kneg kpos kavg 
1200 -0.0184 0.0152 -0.0032 
1600 -0.0099 0.0099 -0.0001 
2400 -0.0130 0.0118 -0.0012 
3200 -0.0191 0.0090 -0.0100 
4000 -0.0258 0.0102 -0.0156 
4400 -0.0293 0.0110 -0.0183 
4800 -0.0285 0.0087 -0.0198 

Table VI.1:Differences in FA at z=50 mm  
 

 The differences shown indicate that the FA of higher b images is always lower, and 

thus, averaged over the whole of the image, more difficult to discern. A visual inspection of 

the FA maps also shows that very high b value measurements do not return enough 

information about connectivity. The visual and numerical differences between FA maps taken 

with 800 s/mm2 and those taken with 1200 s/mm2 or 1600 s/mm2 is, however not that 

pronounced.  

 For z=70 mm and z=90 mm planes, only the differences and their numerical 

quantifications are shown. 

 

 
Figure VI.4: Fractional anisotropy difference maps compared to b=800 s/mm2,for transversal plane 

z=70 mm 
at b 1200 (top far left); 1600 (top left ), 2400 (top right); 3200 (top far right) ; 4000 (bottom left); 

 4400 (bottom centre); and 4800 (bottom right) 
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b value of the compared image [s/mm2] kneg kpos kavg 
1200 -0.0145 0.0179 0.0033 
1600 -0.009 0.0095 0.0006 
2400 -0.0125 0.0106 -0.0019 
3200 -0.0148 0.012 -0.0028 
4000 -0.0194 0.0148 -0.0046 
4400 -0.0213 0.0161 -0.0051 
4800 -0.0208 0.014 -0.0068 

Table VI.2: Quantified differences in FA at z=70 mm 
 

 Table VI.2 shows that on the lower b values, the difference is less marked, as 

discussed above. The positive total FA difference in the first two values means that an this 

plane, it would be beneficial to measure fractional anisotropy with b values 1200 s/mm2 or 

1600 s/mm2, but the effect of incomplete brain outline and noise removal can not be 

discounted.  

 

 

 
Figure VI.5: Fractional anisotropy difference maps compared to b=800 s/mm2,for transversal plane 

z=90 mm 
at b 1200 (top far left); 1600 (top left ), 2400 (top right); 3200 (top far right) ; 4000 (bottom left); 

 4400 (bottom centre); and 4800 (bottom right) 
 

b value of the compared image [s/mm2] kneg kpos kavg 
1200 -0.0132 0.0186 0.0054 
1600 -0.0081 0.0093 0.0012 
2400 -0.0114 0.0116 0.0002 
3200 -0.0129 0.0132 0.0004 
4000 -0.0138 0.0182 0.0044 
4400 -0.0143 0.0197 0.0054 
4800 -0.0151 0.0154 0.0003 

Table VI.3: Quantified differences in FA at z=70 mm 
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 The average difference is positive, even if very low. Based on these three planes, we 

suggest that 1200 s/mm2 and 1600 s/mm2 might be feasible b values for measuring fractional 

anisotropy. However, the differences are not very pronounced, and ultimately, the choice 

must always be with the referring physician and/or the medical physicists performing the scan. 

 

VI.2: Diffusion signal in the brain 

 

 Diffusion signal intensity was also investigated. We selected three regions on interest, 

each of 3×3×3 voxels, characterizing very dissimilar areas of the brain. The third ventricle as 

a mainly fluid region, the corpus callosum as a white matter region, and the visual cortex as a 

mainly grey matter region. All diffusion weighted images were corrected for nonperfect 

coregistration and noise by removing voxels with signal intensities higher than one.  

 Due to the complex nature of the brain, this method is very susceptible to the region of 

interest selection. Due to this sensitivity, we did not perform a numerical analysis of the data, 

and we only show the signal behaviour. 

0 1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

  Grey matter
 White matter
 Ventricle

S
ig

na
l i

nt
en

si
ty

b [s/mm2]

 
Figure VI.6: Signal intensity in the three different ROIs of the brain 

 
 As can be seen, white matter is the most restrictive structure of the investigated ROIs. 

Grey matter and the ventricle have a similar diffusion profile. This is probably due to liquor 

pulsation in the ventricles. The investigated region of grey matter is also very rich in sulci and 

gyri (highly gyrificated), leading to a significant signal distortion. In all cases, the signal 

diminishes with the increase of the b value, though a clear mono or biexponential nature can 
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not be discerned. Plotting the natural logarithm of the signal gives more information. The 

natural logaritm of a monoexponential signal is linear, while in a biexponential, this is not true.  
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Figure VI.7: Natural logarithm of the signal in the ROIs 

 

 There is no clear linear characteristic for any of the three ROI. The difference between 

grey and white matter becomes more evident on the graph above. Based on this observation, 

we concluded that in this measurement with this scanner, all investigated parts of the brain, 

and by projection, the brain as a whole, shows a non monoexponential diffusion profile. 
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Chapter VII: b-dependent diffusion signal intensity measurements 

in compartment phantoms 

 

 As described in Chapter V, non-monoexponential signal behaviour can arise from 

factors other than volumetric association. Specifically, biexponential signal behaviour has 

been shown in single compartment systems where the diffusion distance is comparable to the 

size of the compartment.  

 We wanted to investigate if this effect can be measured in the clinical scanner of the 

MR Research Centre, and if this effect can also arise in a macroscopic phantom.  

 

VII.1: Measurements in a macroscopic phantom 

 

 Based on the results of [21], we wanted to measure whether barrier effects arise if the 

compartment is not in the same size scale as the diffusion distance. Even so, with the voxel 

sizes typical in clinical applications, a voxel close to an impermeable barrier may contain a 

different diffusion profile, since the restricted particles very close to the barrier can interact 

with the particles in the voxel, and this may lead to a change in the signal.  

 For this measurement, we used a beaker of 6.5 cm diameter, filled with distilled water. 

Water, glass, and air have significantly different magnetic susceptibility values, therefore we 

placed the above beaker into a bigger one of 9.5 cm diameter, also filled with distilled water. 

Our original beaker was thus far from the air-water border, and did not suffer from significant 

susceptibility artefacts.  

 
Figure VII.1: The macroscopic phantom 

 

 We used b values from 200 s/mm2 to 5000 s/mm2, with an increment of 200 s/mm2 

per step. Our field of view was 256·256·70 mm, with voxel sizes 2·2·2 mm. Diffusion was 

measured in the directions x;y;z;-x;-y;-z. The measurements along the negative axes were 

done to minimise the effect of gradient field and radiofrequency field inhomogeneities. Each 
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measurement was repeated three times, leading to 18 measurements for each b value. The 

orientation was such that the z direction was parallel to the long axis of the beaker. 

 Data was exported to DICOM files, and converted to NIFTI, and analysed with 

MATLAB and OriginPro software.  

 We analysed three distinct volumes. Two volumes of 5×5×5 voxels; the centre of the 

beaker, where, according to our hypothesis, there should be monoexponential diffusion, and a 

volume close to the edge of the beaker, where we might expect to find a change in the signal 

behaviour. For each direction and its opposite, we averaged the signals of the six 

measurements.  

 Figure VII.2 shows the signal intensity as a function of the b value in the two volumes, 

along three directions:  
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Figure VII.2: Signal intensity in two volumes of the beaker  

 
 In figure VII.2,V1 denotes the volume in the centre of the beaker, far from the walls, 

while V2 denotes the volume closer to them. The figure shows exponential signal behaviour in 

all directions and in both volumes. This behaviour was analyzed by fitting both 

monoexponential and biexponential curves onto the data points. The monoexponential fit 

function was y=A·exp(-b·x); the biexponential fit function was y=A·exp(-b·x)+(1-A)·exp(-c·x). 

The starting parameters for iteration of the biexponential fit were the results of the 

monoexponential fit. Fitting was performed with the Matlab curve fitting tool. 
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Monoexponential fit 
 V1x V1y V1z V2x V2y V2z 
A 0.9998   1 1.001 0.9802 0.9705 0.9788 
bounds of A 0.9877, 1.012 0.9872, 

1.013 
0.9884, 
1.014 

0.9705, 
0.99 

0.9612, 
0.9798 

0.9692, 
0.9884 

b 0.002104 0.002104 0.002107 0.002131 0.002121 0.002134 
bounds of B 0.002075, 

0.002133 
00204, 
0.002135 

0.002077, 
0.002138 

0.002107, 
0.002155 

0.002099, 
0.002144 

0.00211, 
0.002157 

r2 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 
Biexponential fit 
A 0.9614 0.9796 0.9625 0.9215 0.8349 0.9576 
bounds of A -4.312, 3.0356 -3.9345, 

2.0423 
-3.9648, 
3.1845 

0.8942, 
1.231 

0.7534, 
1.4234 

0.7593, 
1.156 

b 0.002125 0.002108 0.002124 0.002268 0.002355 0.00225 
bounds of b 0.0007095, 

0.00354 
0.0005565, 
0.009782 

0.0005161, 
0.003732 

0.001915, 
0.002622 

0.001683, 
0.003026 

0.002063, 
0.002437 

c 0.001666 0.001896 0.00168 0.001369 0.001541 0.001133 
bounds of c -0.02378, 0.02711 -0.3183, 

0.3221 
-0.02849, 
0.03185 

-0.00074, 
0.003478 

-0.000383, 
0.003464 

-
0.0005541, 
0.002821 

r2 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 
Table VII.1: Biexponential MATLAB curve fitting res ults for the two volumes and three direction 

 
  While both the mono, as the biexponential fits result in good r2 values, 

denoting well fitting curves, the confidence intervals for A, or the intensity distribution ratio 

are far greater if the biexponential fit is applied to the internal volume (V1), where we assume 

monoexponential signal. Apparent diffusion coefficients for both volumes and both fitting 

methods are close to 10-3 mm2/s, i.e. the diffusion coefficient of free water. The diffusion 

coefficient for the signal component of lower intensity (parameter c) is in all cases 

significantly lower, about half the coefficient of the high intensity component. In case of the 

V2 volume, this could be a result of restricted diffusion arising from the closeness of a 

restrictive barrier in the form of the edge of the beaker.  

 Since monoexponential curves could be fitted with good confidence intervals to both 

volumes, we performed further analysis with another method. The natural logarithm of a 

monoexponential function is a linear function, while that of a biexponential function is not. 

Therefore, is we plot the signal intensities with respect to b, we should see if a certain signal 

is monoexponential or not.  
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Figure VII.3: The natural logarithm of the signal in figure VII.2 

 
 Figure () shows that the natural logarithms of the measured signals are not linear 

functions of b, thus these signals are not completely monoexponential. This is true for both 

investigated volumes, possibly due to impurities of water used in the experiment. However, in 

the range of 2200 s/mm2 or higher b values, there is a difference in signal intensities between 

the centre volume, most prominent in the x directional signals (the direction in which volume 

2 was closest to the wall of the beaker). This means that despite the possible impurities, or 

other effects causing non-monoexponential behaviour globally, there is still an effect arising 

from one volume being close to the wall, or the edge of the compartment: 
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Figure VII.4: The b>2000 s/mm2 part of figure VII.3 

 

 The difference shown on figure VII.4 can be quantified in the following way. The 

signal intensity measured along the x direction, the direction where the volume was closes to 

the wall, was compared for each b value to the averaged signal intensity of the V1 volume: 
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b [s/mm2] Signal difference [%] 
2200 9 
2400 5 
2600 5 
2800 5 
3000 3 
3200 4 
3400 6 
3600 5 
3800 5 
4000 5 
4200 5 
4400 4 
4600 5 
4800 5 
5000 7 

Table VII.2: Signal difference in the x direction 
 

 Table VII.2 shows a signal difference of 2-9%. This signal difference is probably 

caused by the voxels closest to the edge of the beaker, where the diffusion profile is severely 

distorted by the presence of an impermeable wall. This distortion is very prevalent on voxels 

that are just one voxel away from the wall. Voxels directly adjacent to the wall were not taken 

into consideration to avoid partial volume effects. Figure () shows two example voxels, vox_x, 

close to the barrier along the x dimension, and vox_y, close to that barrier along the y 

dimension. In both cases, the graph shows the average signal intensity over all dimensions. 
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Figure VII.5: Signal intensity comparison for two near-barrier voxels and the middle sample 

 
 Even if only the averages of the single voxel signals are taken into consideration, the 

difference between the signals is statistically significant on b values of 2200s/mm2 or higher 

(p<0.001) . The difference between the signal intensities in vox_x and vox_y, compared to the 

signal average of V1: 
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b [s/mm2] 
 

Signal difference [%] 
Vox_y Vox_y 

2200 14 8 
2400 14 10 
2600 21 9 
2800 25 10 
3000 28 8 
3200 29 12 
3400 33 9 
3600 34 10 
3800 33 15 
4000 32 6 
4200 30 6 
4400 35 15 
4600 30 5 
4800 37 10 
5000 18 3 

Table VII.3: Signal difference for single, near-barrier voxels 
 
 Based on these results, we conclude that, when measuring diffusion with in the clinical 

scanner of the MRRC in a macroscopic, non.restrictive medium, the signal will not show a 

completely monoexponetial behaviour. This non-monoexponentiality increases as the 

investigated volume is moved closer to the barrier of the medium. The non-monoexponential 

part is significant above b values of 2200s/mm2. Voxels very close to the barrier contribute to 

this part of the signal if the investigated volume is close to the barrier. Averaging over many 

voxels, some closer to the barrier than others, diminshes the effect of the wall.  

 

VII.2: Measurements in test tubes and capillaries 

 

 Based on our results discussed above, we wished to investigate the signal behaviour in 

more constrained volumes. To this end, we constructed a set of phantoms using laboratory test 

tubes of 0.75 cm diameter, filled with capillaries of 150 µm diamater. Three phantom were 

used. Two tubes filled with capillaries and distilled water, resulting in a maximal radial 

compartments size in the x-y plane of 75 µm, and one test tube without capillaries, filled with 

distilled water. The capillaries were held in place by foam pads at both ends of the test tubes. 

During the measurements, the capillaries were put into a heat bath to keep them from 

warming. 

 

 Our measurements were conducted using the same scanner and coil as before. The 

field of view was 128·128·96 mm, with voxel size being 1·1·1 mm. Diffusion was measured 

along six directions, and repeated three times, like in the previous measurement. The b values 
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encompassed the range 800-4800 s/mm2, with an increment of 400 s/mm2. Diffusion signal 

intensity was investigated in 5·5·5 voxel volumes in each test sample. Orientation was such 

that the z axis corresponded to the long axis of the samples.  

 Data was first analyzed by taking the natural logarithm of the signals and plotting it 

against the b values:  
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Figure VII.6: Longitudinal and transverse signal intensity for the three samples 

 

 Figure VII.6 shows a marked difference in the signal intensity for the two capillary-

filled tubes and the test tube filled with distilled water (cap1, cap2, and dw respectively). The 

signal of the two test tubes filled with capillaries does not differ from each other greatly. For 

this reason, we calculated the average of the signals in the capillaries, and compared that to 

the signal of the test tube filled only with distilled water: 
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Figure VII.7: Averaged longitudinal and transverse signal intensity for the three samples  

 
 As seen of Figure VII.7, the signal is not completely monoexponential in either case. 

The difference from the monoexponential signal behaviour is greater in the samples filled 

with capillaries. There is a linear behaviour in the logarithmic signal for b values under 
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2000s/mm2, therefore on those ranges, the signal behaves monoexponentially. The difference 

between the signals from the capillaries depends on the b value in the following way:  

 

B values [s/mm2] Signal difference in the x-y plane 
[%] 

Signal difference along z axis 
[%] 

800 10 9 
1200 17 10 
1600 32 29 
2000 45 43 
2400 54 46 
2800 57 52 
3200 58 50 
3600 53 51 
4000 57 58 
4400 48 56 
4800 52 53 

Table VII.4: Signal intensity difference between the capillariy sample and the distilled water sample 
 
 As can be seen on Table VII.4, the difference in the signals is more than 50% on high 

b values. This can be interpreted as the effect of the much higher restriction in those test tubes 

that are filled with capillaries. The difference is much higher compared to the case of single 

voxel in the beaker. This is due to reduced distances to the edge of the compartment, which in 

the case of the capillary-filled test tubes, is smaller than the voxel. 

 Curve fitting based analysis was performed on the averaged data on the two tubes with 

capillaries and the test tube filled with distilled water. 

Monoexponential fit 
 

A 
capilxy capilz dwxy dwz 
0.256 0.2611 0.4767 0.4581 

bounds of A 0.09654,  
0.4137 

0.09878, 
0.4235 

0.112, 0.8415 0.1335, 
0.7826 

b 0.0006783 0.0006902 0.001372 0.001305 
bounds of B 0.0002672, 

0.001089 
0.000275, 
0.001105, 

0.0006492, 
0.002095 

0.0006494, 
0.00196 

r2 0.5982 0.6444 0.7869 0.7805 
Biexponential fit 

 
A 

capilxy capilz dwxy dwz 
0.226 0.231 0.4558 0.4374 

bounds of A 0.1968, 0.2555 0.2021, 
0,2606 

0.4439, 
0.4676 

0.4252, 
0.4496 

b 0.0009752 0.0009816 0.00161 0.001534 
bounds of b 0.0004832, 

0.001467 
0.000497, 
0.001466 

0.001356, 
0.001864 

0.001285, 
0.001783 

c 0.0001323 0.0001058 0.00007176 0.0000235 
bounds of c 0.000075634, 

0.000213 
0.0000348, 
0.0002123 

0.00000931, 
0.000121 

0.00000436, 
0.00008676 

r2 0,7261 0,7317 0.9129 0.9144 
Table VII.5: Curve fitting analysis of the signal in capillaries and distilled water samples 
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 The very low values for the signal intensity in the monoexponential case are the result 

of a strong overall restriction. As can be derived from equation IV.16, a higher restriction 

leads to a lower intensity. For this reason, the buiexponential fit was modified in the following 

way: y=A·B·exp(-b·x)+A·(1-B)·exp(-c·x), where B is the parameter deterimned by the fitting, 

and A is the intensity parameter of the monoexponential fit. Table () show the corrected (A·B) 

value. Both samples show strongly non-monoexponential signal behaviour, evidenced by the 

low r2 values. In the capillary-filled test tubes, the apparent diffusion coefficients for both the 

mono and the biexponential fit are at least one magnitude lower than the diffusion coefficient 

of free water. This is due to the very tight restrictions caused by the capillaries.  

 In the distilled water filled test tube, the monoexponential fit shows an apparent 

diffusion coefficient close to the diffusion coefficient of free water. The biexponential fit 

show a very low diffusion coefficient for the slow signal component, which could be the 

result of thermal convection.  

 

 From these multiple analyses, we conclude that the non-monoexponential nature of the 

signal depends very strongly on the effective distance from the edges of the compartment. If 

the investigated volume is relatively far away from the barrier of the compartment, the 

apparent diffusion coefficient is comparable to that of free water. If the barrier is close in 

terms of diffusion distance, the signal is distorted by components of slow diffusion 

coefficients. If the compartments are small enough to fit multiple times into a single voxel, 

then this effect is greatly increased, and the diffusion coefficients are an order of a magnitude 

lower. 
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Chapter VIII: Measurement of volumetric signal association using 

red blood cells 

 

 As described in Chapter V, the signal components can be attributed to intracellular and 

extracellular volumes. While ratio of the signal components is not the same as the ratio of the 

volumes, changes should occur if the volume ratio is changed.  

 In our experiments, we aimed to demonstrate that this association is measurable in a 

clinical scanner, and can thus be important clinically, and that there is a correlation between 

the signal behaviour and the ratio of intra and extracellular water compartments.  

 To measure this effect, we had to find a viable sample. As a general rule, tissue 

contains more than just the cells and water surrounding them. Collagen fibres, 

macromolecules, and various other extracellular structures, while playing a part in the signal 

behaviour, are not associated with the volume of the sample, or the volume of the cells. For 

our measurements, we needed a tissue that with a great oversimplification is just intracellular 

water in the form of cells, and extracellular water in the form of a solution.  

 Red blood cells and saline solution fulfil these criteria. A mix of red blood cells and 

saline (henceforth referred to as saline solution), created from a blood pack, has only 

intracellular water in the form of the intracellular water of the red blood cells, and a negligible 

amount of white blood cells, while the extracellular water is only the solution. The red blood 

cells, when treated with anti-coagulation agents, will not form extracellular structures. 

Therefore, the cells will move around freely in the sample, and any restriction to diffusion 

will arise solely from the cells membranes separating the water into extra and intracellular 

compartments. 

 The ratio of the compartments can also be changed easily. Saline solution is isotonic 

with regards to red blood cells. Thus, if we dilute the sample, the red blood cells do not suffer 

swelling, so only the ratio of the intra-, and extracellular compartments changes. 

 We have obtained our samples from the Hungarian National Blood Transfusion 

Service. Two 250ml bags of red blood cell solution were supplied with a haematocrit fraction 

of 60%. 

 We conducted two sets of measurements, first a pilot to investigate the feasibility of 

measurements, and secondly a more detailed set with many ratios of intra and extracellular 

water. 
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VIII.1: Pilot measurement 

 

 Our first measurement was conducted with only one dilution step, thus only one 

change in the compartment ratio. We filled a beaker of 6.5 cm diameter with saline solution 

from one of the blood bags. This beaker was placed in the head coil, positioned to be in the 

central axis of the MR machine. The sample was previously kept in cold storage, thus it was 

left to reach thermal equilibrium with the environment. Temperature was monitored during 

the measurement, and it was found to be constantly 22±1 oC. 

 The following imaging parameters were used: field of view=96·96·70 mm; voxel 

size=1·1·1 mm. Diffusion was measured along six axes, x,y,z, and -x, -y, -z. The signal was 

measured at 12 b values, from, 200 s/mm2 to 5000 s/mm2 in incremental steps of 400 s/mm2. 

Temperature measurements were performed after 1400 s/mm2, 2600 s/mm2 and 3800 s/mm2. 

During each temperature measurement, the sample was stirred to prevent sedimentation. 

 The sample was afterwards diluted with 250 ml of isotonic saline, thus doubling the 

absolute volume, and decreasing the haematocrit fraction to 30%. Measurements were 

performed at five b values from 1000 s/mm2 to 5000 s/mm2, in increments of 1000 s/mm2. 

 Data was extracted as DICOM files, converted to NIFTI format using MRIcron 

software, and converted to MATLAB data. Analysis was performed with MATLAB and 

Origin 8. 

 Diffusion signal intensity of both measurement sets, averaged for all six axes, and 

averaged for a 10×10×10 voxel volume in the middle of the sample is shown of figure VIII.1: 
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Figure VIII.1:Normalized signal intensity for dilut ed and undiluted red blood cell solution 
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 As can be seen, the dilution caused a significant change in overall diffusion signal 

intensity. Since we only measured five points for the diluted sample, an analysis of 

biexponentiality was not feasible. However, based on the difference in intensity, we 

conducted measurements with more dilution factors. 

 

VIII.2: Measurement with multiple dilutions 

 

 For our multiple dilution measurements, we used the second blood pack. Field of view 

and voxel size were the same as in the pilot measurement. Diffusion was again measured 

along six direction and the measurements was performed three times. B values rose from 

500 s/mm2 to 5000 s/mm2, in increments of 500 s/mm2. To prevent sedimentation, the sample 

was stirred after measurements with 1500 s/mm2 and 3000 s/mm2. The original, undiluted 

volume of 210 ml was diluted in steps to 320 ml, 420 ml, 500 ml and lastly 970 ml, leading to 

haematocrit values of 60%; 39%; 30%; 25%; 13% respectively. A 5×5×5 voxel volume in the 

middle of the sample was used for the analysis. 
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Figure VIII.2:Non-normalized signal intensity for multiple dilution factors 

 
 As seen on Figure VIII.2, the repeated measurement did not show a very marked 

difference in signal intensity between the various samples of different haematocrit 

concentrations. All signals behave in an exponential fashion. The natural logarithm of the 

signal was also analyzed. 
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Figure VIII.3: Natural logarithm of signal intensit y for multiple dilution factors 

 
 At all dilutions, the signals show a different behaviour than in the experiments with 

distilled water. There is no clear break in the logarithmic signal, and the linear part goes on to 

b=3000 s/mm2. While a difference in signal behaviour is evident from the logarithmic figure, 

further analysis was performed via fitting curves onto the signal.  

 The biexponential fit was done in the following way: y=A·B·exp(-b·x)+A·(1-B)·exp(-

c·x), where B is the parameter to be determined by the fitting, and A is the intensity parameter 

of the monoexponential fit. In table (), the corrected value is shown as A', while the calculated 

A·(1-B) value is shown as D'.  

Monoexponential fit 
 60% 39% 30% 25% 13% 
A 0.5074 0.8534 0.9138 0.9714 1 
bounds of A 0.4286, 0.5863 0.7785, 

0.9284 
0.8306, 
0.997 

0.8841, 
1.059 

0.6342, 1.366 

b 0.001075 0.001209 0.001379 0.001425 0.001231 
bounds of b 0.0008981, 

0.001252 
0.0011, 
0.001317 

0.001258, 
0.001501 

0.001302, 
0.001547 

0.0007754, 0.001687 

r2 0.9819 0.9952 0.9958 0.9961 0.9438 
Biexponential fit 
A' 0.4934 0.8415 0.9038 0.9612 0.9999 
bounds of A' 0.4329, 0.5541 0.8046, 

0.8781 
0.8736, 
0.9339 

0.9386, 
0.9843 

0.9964, 1.003 

D 0.01399 0.01186 0.00996 0.0102 0.00001 
b 0.001166 0.001259 0.001425 0.001471 0.001231 
bounds of b 0.0009461, 

0.001386 
0.001168, 
0.00135 

0.001339, 
0.00151 

0.001405, 
0.001537 

0.001132, 0.00133 

c 0.0000103 0.0000103 0.0000105 0.000016 0.0001231 
bounds of c -0.0009959, 

0.001016 
-0.000737, 
0.000757 

-0.000731, 
0.0007511 

-
0.0005494, 
0.0005515 

0.0001031, 0.0001343 

r2 0.9915 0.9984 0.9985 0.9993 0.9358 
Table VIII.1: Curve fitting analysis of diffusion signal for multiple dilutions 
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 From these results, we can see that the diffusion coefficient of the fast fraction, or the 

extracellular space is close to that of unrestricted diffusion, as we expected. The diffusion 

coefficients of the slow component are two orders of a magnitude lower, possibly denoting a 

connection between the measured slow component and the intracellular water. As can be seen 

in the last column, when the intracellular water component is only 13%, the biexponential fit 

becomes almost monoexponential, with the weight of the fast fraction very close to one.  

 The A and A' parameters, which denote the signal change due to diffusion, also 

correlate with the dilution. Since the higher this parameter is, the lower the signal change is, 

this behaviour is consistent with the theory. Lastly, the ratio of D and A',  the parameters of 

the slow/fast signal components, can be investigated. This ratio is 2,83% for the undiluted 

sample, 1,41% for the first; 1,1% for the second, 1,06% for the third, and 0,001% for the 

fourth dilution. While this ratio is not consistent with the ratio of intra and extracellular water, 

it does change in accordance with the dilutions. The slow signal component is diminished as 

the ratio of intracellular water is lowered.  

 Sedimentation was measured in the most diluted sample by performing five scans of 

b=1000 s/mm2 in sequence. This took 20 minutes. There is no marked difference between the 

signal intensities in either case, thus, the effect of sedimentation of the signal was ruled to be 

minimal. 

 Therefore, we conclude that there is a connection between biexponential signal 

behaviour and intra-, extracellular water compartmentalisation, and that this is measurable on 

clinical 3T scanners. 
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Chapter IX: Summary and conclusions  

 

 During the measurements for my master's thesis, we conducted diverse measurements 

pertaining to the signal intensity as a function of the b value, both in vivo and in vitro. 

 For imaging the human brain, different b values, thus different measured diffusion 

speeds were shown to lead to different fractional anisotropy maps. These maps were 

compared to each other numerically and visually. From the standpoint of a physician, the best 

maps were those measured at b values from 800 s/mm2 to 2400 s/mm2. Signal intensity was 

also compared in different regions of interest in the brain. Each region showed a non-

monoexponential signal behaviour, and the signal behaviour was found to differ with the 

regions. From this we concluded that the structural makeup of the brain influences the signal 

behaviour, depending on the local structures. 

 We tested the hypothesis that non-monoexponential signals can arise in single 

compartment system. In a macroscopic phantom, the non-monoexponentiality of the signal 

was found to be stronger when measured in volumes close to the barrier of the compartment, 

and was very strong in single voxel measurements on the edge of the barrier.  

 This non-monoexponential behaviour was also found to arise in test-tube and capillary 

sized systems. In this comparison, we found that the capillary system, where the compartment 

length was orders of magnitude lower than in both the macroscopic phantom and the test tube, 

the non-monoexponential signal component was stronger. 

 We also conducted experiments regarding the volumetric association of the non-

monoexponential signal. Using saline solution of red blood cells, we found that the signal 

intensity changes with the ratio of extra-, and intracellular water. The slow and fast signal 

component changes were found to correlate to the intra-, and extracellular volume changes. 

 From these measurements, we conclude, that in a 3T clinical scanner, in our 

experimental arrangements, a non-monoexponential diffusion signal can arise from both 

barrier effects in a single compartment, and volumetric association in a multi-compartment 

system.  
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