Sugárvédelem az orvosi fizikában 2020/21 őszi félév

- "Általános sugárvédelem" témái (IX. 21. X. 19.):
- Bomlási módok, ionizáló sugárzások és az anyagi közeg közötti kölcsönhatások
- Elnyelt dózis, KERMA, dózisteljesítmény
- Dózis- és dózisteljesítmény mérése és számítása
- A belső sugárterhelés meghatározása kis aktivitások meghatározásának sajátos problémái

Félévközi dolgozat: 2020. X. 26.

A radioaktivitás alapegyenletei

$$dN = -\lambda \cdot N \cdot dt$$

$$A = \left| \frac{dN}{dt} \right| = \lambda \cdot N$$

N: bomlásra képes, azonos fajtájú atommagok száma [darab] λ: bomlási állandó = időegység alatti <u>bomlás valószínűsége</u> [1/s] t: idő A: aktivitás [1/s : Becquerel: Bq]

A: aktivitás [1/s ; Becquerel; Bq] T_{1/2}: felezési idő [s]

$$N = N_0 \cdot e^{-\lambda t} \qquad A = A_0 \cdot e^{-\lambda t} \qquad T_{1/2} = \frac{\ln 2}{\lambda}$$

A fentiek kiegészülhetnek a keletkezést (aktivációt) leíró taggal, ha a bomlásra képes atommagokat egy irányított magreakcióban hozzák létre.

Radioaktivitás - bomlási módok

$$E_{sug} = \sum_{p} (E_{m_0} + E_{kin})$$

Bomlási módok: α, β ("önálló"), γ ("kísérő"), f (maghasadás, "összetett") p: a bomlásban kibocsátott részecskék m: nyugalmi tömeg E_{kin}: kinetikus (mozgási) energia

$$E = m \cdot c^2$$

Az **alfa-bomlás** során a kezdeti atommag egy hélium atom pozitív elektromos töltésű atommagját bocsátja ki, közepes magoknál (lantanidák) 2-4 MeV, nagyoknál (aktinidák) 4-8 MeV mozgási energiával. Az alfa-bomlás során a tömegszám 4gyel, a protonszám 2-vel csökken, így a magon belül a protonok taszításából származó, a nukleonok kötését gyengítő elektrosztatikus energia is csökken. Hajtóereje az erős kölcsönhatás.

"<u>Diszkrét</u>" energiaváltozás: E_{kin} jellemző az adott radioizotópra, de megoszlik a részecske mozgási energiájára és a visszalökött mag energiájára. Az alfa-bomlás "hajtóereje" a nukleonok közti erős kölcsönhatás.

Bomlási módok

Béta-bomlások: A kinetikus energia változó arányban megoszlik az elektron/pozitron és a neutrínó/antineutrínó között, ezért az elektron(pozitron) kinetikus energiája <u>nem diszkrét</u>. A bomlás hajtóereje a gyenge kölcsönhatás.

1) β^- : elektron és antineutrínó kibocsátása n \rightarrow p⁺ + e⁻ + $\tilde{\nu}$: a rendszám eggyel nő

2a) β⁺: pozitron és neutrínó kibocsátása
p⁺→n + e⁺ + v: a rendszám eggyel csökken
"antianyag" – annihiláció: elektronnal megsemmisülés

 $e^{+} + e^{-} = 2f$

2b) elektronbefogás (EC – electron capture) és neutrínó kibocsátása
 p⁺ + e⁻ →n + v: a rendszám eggyel csökken
 A "hiányzó" pályaelektron pótlódik egy külső pályáról – kísérő <u>karakterisztikus</u> röntgensugárzás keletkezik

Bomlási módok

Gamma-átmenet: a belső átrendeződés nyugalmi tömeggel és töltéssel nem rendelkező foton kibocsátásával jár. A γ-bomlás nem önálló bomlási mód; más magátalakulások lezárásaként, a gerjesztett atommag "maradék" energiatöbbletének leadása során következik be.

A foton energiája diszkrét, azonos a megváltozott belső részecske által betöltött előző és következő energiaszint különbségével, ezért jellemző az adott radioizotópra.

A mag belső energia-eloszlásának változása egyes esetekben (főként nagy tömegszámú magoknál és kisebb energiaváltozásoknál, E_v<2-300 keV) nem foton kibocsátásával jár, hanem az energia egy, általában belső, szimmetrikus atompályán rezidens (azaz a magon "belül" is bizonyos tartózkodási valószínűséggel rendelkező) elektron mozgási energiájává alakul. Ez a *belső konverzió* (internal conversion, IC), amit karakterisztikus röntgenfoton kibocsátása követ, hasonlóan az EC-hez.

A belső konverziós elektron energiája diszkrét!

$$E_{\gamma} \Longrightarrow E_{e-,kin} + E_{e-,köt}$$

A sugárzások és az anyagi közeg kölcsönhatása

A <u>közeg</u> kölcsönhatásra képes alkotórészei: <u>elektronok</u>, az atom elektromágneses erőtere, atommag.

A közeg és a sugárzás közötti kölcsönhatás szerint:

 <u>Közvetlenül</u> ionizáló sugárzások: α, β, (γ, röntgen) – az elektronoknak képesek azok ionizációjához elegendő energiát átadni, de az (utóbbiak) kölcsönhatása ritka, véletlenszerű.

 - Közvetve ionizáló sugárzás: neutron: atommagokkal való kölcsönhatás során ionizációra képes részecskéket kelt.

Az elektronokkal való sokszoros ütközés nem minden esetben vezet azok ionizációjára. A sugárzás által több lépésben átadott energia egy része (általában 60-70 %-a) nem ionizációt, csak gerjesztést eredményez, azaz összességében a közeg termikus energiáját növeli meg.

A gyorsan mozgó szabad töltéshordozók (α²⁺, β⁻-részecskék vagy ionizált szekunder elektronok) az atomok elektromágneses terében fékeződve járulékos fotonsugárzást = folytonos röntgensugárzást kelthetnek.

Alfa- és bétasugárzás elnyelése az anyagban

Lineáris energiaátadási tényező (LET) alfa- és bétasugárzásra

Az anyagban megtett távolság (rel. egységekben)

Alfa- és bétasugárzás kölcsönhatása anyagi közeggel

α-sugárzás átlagos LET-értéke vízben: > 150 keV/µm
 Energiaátvitel: ionizáció vagy gerjesztés több lépésben
 Hatótávolság (range): maximális behatolási távolság (pl. 40 µm 5,3 MeV-re vízben)

β-sugárzás LET-értéke vízben: <10 keV/μm Energiaátvitel:

- elektronnal ionizáció vagy gerjesztés több lépésben;

- atom elektromágneses erőterével: fékezési sugárzás (folytonos röntgensugárzás, energiája a közeg rendszámától is függ), Cserenkovsugárzás: az adott közegben érvényes fénysebességnél nagyobb sebességű elektron látható fényt is kibocsát.
- A hatótávolság (< 5 cm kondenzált közegekben) lényegesen kisebb, mint az energia-átvitelben részt vevő elektronok összes úthossza!

Gamma- és röntgensugárzás kölcsönhatása anyagi közeggel

- Foton energiaátadása részben hullám- részben anyagi természetű rendszernek "ütközés"
- Elektronnal (ionizáció többféle kölcsönhatásban)
- Atommaggal (abszorpció küszöbreakció, csak >5 MeV energiánál)
- Atom elektromágneses erőterével (küszöbreakció, csak >1,2 MeV energiánál))

Általános törvényszerűség: sztochasztikus (véletlenszerű) kölcsönhatás: csak néhány "ütközés" okoz energiaátvitelt

Az energiát átvett elektronok kinetikus energiája:

- További ionizációt okozhat;
- Ionizáció nélküli gerjesztést okozhat;
- Szekunder fotonsugárzás (folytonos röntgensugárzás) keltését eredményezheti.

Fotonsugárzás kölcsönhatásai – teljes abszorpció

(régebbi nevén: fotoeffektus)

A foton teljes kinetikus energiáját átadja a vele "ütköző" elektronnak. Mivel E_f >> E_{ion}, ezért az elektron nagy sebességgel "távozik" az atompályájáról. A foton megszűnik.

$$E_f = E_{e,kin} + E_{e,ion}$$

Fotonsugárzás kölcsönhatásai – Compton-szórás

A foton kinetikus energiát ad át a vele "ütköző" elektronnak. Mivel $\Delta E_f >> E_{ion}$, ezért az elektron nagy sebességgel "távozik" az atompályájáról. A szórt (új) foton az eredetinél kisebb energiával megváltozott irányban továbbhalad.

$$E_{f} = E_{f'} + E_{e,kin} + E_{e,ion}$$

Fotonsugárzás kölcsönhatásai - párkeltés

A foton az atom összetett elektromágneses erőterével lép kölcsönhatásba: átadja teljes energiáját és megszűnik. A <u>bozon</u> energiájából két <u>fermion</u>: e⁻ és e⁺ keletkezik.

$$E_{f} = E_{e-,m} + E_{e-,kin} + E_{e+,m} + E_{e+,kin}$$

Csak akkor lehetséges, ha $E_f > 2.E_{e,m}$, azaz $E_f > 1022$ keV

$$m_e = \frac{511 \ keV}{c^2}$$

Fotonsugárzás kölcsönhatása anyagi közeggel

$dI = -I(x) \sigma N dx$

Párhuzamos és monoenergiás sugárnyaláb esetén I: részecskeáram [darab/s] σ : kölcsönhatási valószínűség egy "partnerre" [-] N: partnerek száma egységnyi úthosszon [darab/m] $\mu = \sigma . N = egységnyi úthosszra jutó$ kölcsönhatási valószínűség [1/m]

$$I = I_0 \cdot \exp(-\mu x)$$

Integrálás után:
 általános gyengülési
 egyenlet

Fotonsugárzás kölcsönhatása anyagi közeggel

 $I = I_0 \cdot \exp(-\mu x)$

μ: <u>összetett</u> lineáris gyengülési együttható (energiaátadási tényező)

Az energia-átvitel több versengő (egymást kölcsönösen kizáró) formában történhet. (Compton-szórás, teljes abszorpció, párkeltés)

 $\mu = \mu_{TA} + \mu_{CS} + \mu_{PP}$

 μ/ρ = tömegabszorpciós (gyengítési) tényező [m²/kg] = a lineáris gyengítési együttható és a sűrűség hányadosa \rightarrow nem függ a halmazállapottól, csak az anyagi minőségtől

Fotonsugárzás és az anyag kölcsönhatása – rendszám- és energiafüggés

Fotonsugárzás és az anyag kölcsönhatása – a kölcsönhatások rendszám- és energiafüggése

$$\begin{aligned} & \mathsf{D}\acute{o}\mathsf{z}\mathsf{i}\mathsf{s}\mathsf{m}\mathsf{e}\mathsf{m}\mathsf{n}\mathsf{y}\mathsf{s}\acute{\mathsf{g}}\mathsf{e}\mathsf{g}\mathsf{e}\mathsf{k}\\ & D = \frac{dE}{dm} \approx \frac{\Delta E}{m} \bigg[\frac{J}{kg}, gray, Gy \bigg] & D = \frac{1}{m_v} \oint_v \frac{dE}{dx} \, dx \approx \frac{\overline{E}(J)}{m(kg)}\\ & \mathsf{Elnyelt \ dodxis} \end{aligned}$$

<u>Elnyelt = fizikai dózis</u>: az anyag tömegegységében elnyelt összes sugárzási energia, csak fizikai kölcsönhatásokat foglal magába. <u>Bármelyik</u> ionizáló sugárzásra értelmezhető.

<u>Csak</u> ionizáló sugárzásra értelmezett, de <u>nem csak</u> ionizációs energiát jelent.

Nem tartalmazza az anyagból kilépett (szórt, szekunder) sugárzási energiát.

"Egyesíti" a különböző forrásokból származó energia-beviteleket.

Külső dózisteljesítmény

$$\frac{dD}{dt} = \Phi_E \cdot \frac{\mu}{\rho} \qquad \Phi_E = \frac{\left(\frac{dN}{dt}\right) \cdot f_R \cdot E_R}{4 \cdot r^2 \cdot \pi}$$

 Φ_{E} : energiaáram-sűrűség (fluxus) [J/(m²s)] dN/dt = A: a sugárforrás aktivitása [bomlás/s = Bq] f_R: részecske-(foton)gyakoriság [foton/bomlás] E_R: fotonenergia [J/foton]

$$\frac{dD}{dt} = k_{\gamma} \cdot \frac{A}{r^2}$$

Érvényesség: pontszerű γ-sugárforrásra, gyengítetlen (primer) fotonsugárzásra.

Négyzetes gyengülési törvény – a dózisszámítás alapja k_y: <u>dózistényező</u>, szokásos dimenziója: [(µGy/h)/(GBq/m²)]

Több fotonenergiát is kibocsátó pontszerű γsugárforrás dózistényezője

j = összegzés az egyes energiákra k = közeg $\frac{\sum_{j} f_{j} \cdot E_{j} \cdot \left(\frac{\mu}{\rho}\right)_{k,j}}{k_{\gamma} = \frac{4 \cdot \pi}{2}}$

Dózisteljesítmény számítása nem pontszerű (kiterjedt) sugárforrásra:

- a felület explicit függvényével;
- pontszerű elemekre bontással;
- az önabszorpció figyelembe vételével;

"Mérhető" és "valódi" dózis

KERMA: kinetic energy released in mass absorption

Figure 1: The exposure, air kerma and absorbed dose for a single photon which Compton scatters and transfers an energy E_{tr} to an electron at point P. The volume of interest is shown as a circle and the mass of this volume is m. The energetic electron set in motion at P slows down and stops at P_{end} . As it slows down it loses energy which results in 30 ion pairs being created near the track, per keV of energy lost.

KERMA

$$E_{f} = \sum E_{el,|m} + \sum E_{el,|m+\Delta m} + \sum E_{f}^{*}$$

E_f az "m" tömegbe belépő foton energiája;

E_f* a kilépő szórt fotonok maradék energiája;

- Szummák: az "m" tömegben maradt elektronok által felvett összes mozgási energia, ill. a tömeg "határain" kívülre jutott elektronok összes mozgási energiája. Az első két szumma jelenti az úgynevezett "részecske kermát", a szórt fotonok kinetikus energiája pedig a "sugárzási kermát".
- A felhasználás módja szerint <u>kétféle μ</u> használatos, az egyik a teljes elnyelt és eltérített veszteséget fejezi ki, a másik nem tartalmazza a kilépő szekunder fotonokhoz rendelt energiahányadot (a sugárzási kermát).

Elnyelt dózis és KERMA

Szekunder részecske egyensúly (SzRE):

$$\sum E_{\text{el},|m\to(m+\Delta m)|} \cong \sum E_{\text{el},|(m-\Delta m)\to m|}$$

Az adott térrészbe be- és onnan kilépő szekunder részecskék által képviselt energia kb. egyenlő. Ekkor az elnyelt dózis kb. azonos lesz az adott tömegrészben felszabaduló teljes részecske KERMÁ-val.

Az emberi szervezetbe irányuló foton- és elektronsugárzásra az SzRE 70 µm mélységben beáll.

KERMA = a mérőberendezés által jelzett dózis (az ideális detektor viselkedése homogén: bárhol éri ionizáló sugárzás, ugyanolyan válaszjel keletkezik benne) 23

Elnyelt dózis és KERMA

A közegen való áthaladás miatt gyengülő dózis a SZ.R.E. elérése után valamivel nagyobb lesz, mint a KERMA teljesítmény.

A mérőberendezéseknél megadják, hogy milyen mélységű "inaktív" réteg borítja a detektort – H_P és/vagy H^{*} mérése

H_P(10)=*személyi* dózisegyenérték 10 mm mélyen a testszövetben

 $H_P(3)$ = ua. 3 mm mélyen (szemlencse dózisra)

H^{*}(0,07)=*környezeti* dózisegyenérték 70 μm mélyen a testszövet-ekvivalens ICRU-gömbben

effektív dózishoz is. (Az ICRU gömbfantom 30 cm átmérőjű, 1 g·cm⁻³ sűrűségű, emberi lágy testszövet összetételű – tömegszázalékban kifejezve 76,2% oxigén, 11,1% szén, 10,1% hidrogén, és 2,6% nitrogén – gömb.)

X

Külső sugárterhelés mérési módjai

Dózismérés: "utólagos" kiértékelés – személyi dozimetria

- filmdózismérő kémiai változás
- TLD: szilárdtest-dózismérő (termolumineszcencia)
- elektronikus dózismérők: elektroszkóp, impulzusüzemű gáztöltésű és félvezető detektorok

Dózisteljesítmény-mérés: azonnali kiértékelés – <u>területi</u> <u>dozimetria</u>

- impulzus- vagy áramüzemű gáztöltésű detektorok
- szerves szcintillációs detektor

Az ionizáló sugárzások biológiai hatásai

A biológiai hatások osztályozása:

Szomatikus: egy biológiai egyeden jelentkezik Genetikai: egy populáción jelentkezik

Determinisztikus: A károsodás súlyossága függ a dózistól, a hatás egy bizonyos küszöbdózis fölött következik be.

Sztochasztikus: A károsodás valószínűsége függ a dózistól, küszöbdózis nincs.

Az ionizáló sugárzás determinisztikus hatása

Determinisztikus hatás:

- küszöbdózishoz kötött (legalább 0,3 0,4 Gy, magzat 0,1 Gy)
- szövetpusztulást okoz a sugárzás
- akut/azonnali hatás
- életveszélyes szomatikus károsodások: központi idegrendszer, emésztőrendszer, vérképző rendszer
- a fizikai dózist a relatív biológiai egyenértékkel (RBE) kell módosítani, hogy a sugárzás típusát és az expozíciós körülményeket is figyelembe vegyék

27

Determinisztikus hatást kiváltó dózis

$ND = D \cdot RBE(R)$

- ND: necrotic dose = szövetpusztulást okozó elnyelt dózis
- RBE: relative biological effectiveness = relatív biológiai egyenérték (károkozó képesség) – egyaránt jellemzi a sugárzásfajtát és az expozíció körülményeit!

R: sugárzásfajta

RBE

- Az egyes sugárfajták nekrotikus biológiai károsító hatását az un. relatív biológiai hatással (RBE értekkel = relative biological effect) jellemezzük).
- Az RBE érték megmutatja, hogy hányszor nagyobb az adott sugárzás determinisztikus károsító hatása a 250 kV-os röntgengéppel keltett sugárzás hatásánál.
- Az RBE érték függ attól is, hogy milyen típusú biológiai végpontnál nézzük.
- Az RBE belső sugárterhelésnél a sugárzást hordozó anyag fizikai és kémiai tulajdonságaitól is erősen függ.
- A neutronsugárzás RBE értéke 2-6-szorosa a röntgensugárzásénak, fotonok RBE értéke megközelítőleg 1 az energiától függetlenül.

RBE expresses quality of radiation

Egyenértékdózis – az ionizáló sugárzás sztochasztikus hatásával arányos mennyiség

 $H = D.w_{R}$ [sievert, Sv]

 w_R sugárzási tényező (Q minőségi tényező) - a LET függvénye $w_{R,\alpha} = 20$ $w_{R,\gamma} = 1$ $w_{R,\beta} = 1$ $w_{R,\beta} = 2,5 \div 20$ a neutron-energia függvényében

A sejti méretű élő térfogatba bevitt energia (mikrodózis) dönti el az elnyelt dózis veszélyességét (kártételét).

"Antropomorf" dózisfogalom és mértékegység: az emberi szövetek, sejtek viselkedését kell jellemeznie a dózisértéknek.

Az egyenértékdózis csak a sztochasztikus hatáshoz tartozik, a determinisztikus hatásra nem alkalmazható.

Az emberi sejtmag modellje

- <u>Membrán</u> burkolat
- félig áteresztő
- elválasztja a sejtmagfolyadékot a citoplazmától
- <u>Nucleolus</u> RNS-t tartalmaz
- fehérje és DNS szintézis
- <u>DNS</u> a genetikus kódot tartalmazó makromolekula

Az ionizáló sugárzás sztochasztikus hatása

- A "fő célpont" a sejtmag DNS-állománya
- DNS: cukor- és foszfátcsoportokból felépülő kettős spirál, amelyekhez szerves bázisok kapcsolódnak. Láncelem: nukleotid. A láncot a bázisok között hidrogénhidak tartják össze.
- DNS-ből felépülő örökítő elemek: kromoszómák.
- A DNS a sejtet felépítő fehérjék összetételét kódolja.
- Gén: a DNS egy fehérjét kódoló, vagy egy sejti tulajdonságot meghatározó darabja.
- A gének együtt alkotják az egyed genetikai információit tartalmazó genomot.

A sugárzási energia egyik lehetséges hatása: lánchasadás a DNS-ben

Az ionizáló sugárzás determinisztikus és sztochasztikus hatása

Sejti életciklus:

mitózis – interfázis – mitózis vagy apoptózis

Sejti rendszerek sérülése:

- Azonnali pusztulás: nekrózis
- Életképtelenség: apoptózis
- DNS-lánchibák: fennmaradás → osztódás
 → mutáció

DNS lánchibák javítása "repair" enzimekkel
Mi történik a megváltozott sejtekkel? Sejti szintű hatások

"Repair" enzim kijavítja a hibát A se

A sejt elpusztul a hatástól

A sejt osztódik, de az új sejtek elhalnak.

Sztochasztikus károsító hatás

Az ionizáló sugárzás sztochasztikus hatásának jellemzői

- A sztochasztikus hatásnak nincs küszöbdózisa;
- A hatás valószínűsége arányos a dózissal, de a súlyossága független attól;
- <u>Ugyanilyen</u> hatást vált ki <u>bármilyen</u> mutagén anyag vagy esemény;
- Évekig rejtve maradhat = a kiváltó ok nem azonosítható.

Az emberi szöveteket érő sugárterhelés egységes sztochasztikus hatásának értelmezése

$$E = (H_E =) \sum_T H_T w_T [Sv]$$

Effektív dózis w_T szöveti súlyozó tényező

Szöveti súlyozó tényezők (ICRP-103):

ivarszervek w_T=0,08 (genetikus hatás)

szomatikus hatások

 $\sum w_T = 1$

legérzékenyebbek

 $w_T=0,12$ tüdő, gyomor, belek, vörös csontvelő, emlő érzékenyek $w_T=0,04$ máj, vese, pajzsmirigy stb. kissé érzékeny $w_T=0,01$ bőr, csontfelszín

A dózist okozó sugárforrás és a dózist elszenvedő személy kölcsönös pozíciója szerint külső és belső sugárterhelés jöhet létre.

Rosszindulatú tumor kialakulásának kockázata az effektív dózis függvényében – "LNT" modell (linear-no-threshold)

Az egyénre vonatkozó kockázati függvény a szövetek külön-külön nem ismert kockázati függvényeinek összege

A kockázat – effektív dózis függvény meghatározása

Elfogadott forma: LNT (linear – no threshold) Kérdőjelek:

- A függvény megállapításához "tiszta" adatok (pontos mérések, "minta" és "kontroll csoport" szükségesek)
- Hormézis: a kis dózisok "immunitást" okoznak ?
- Szupralinearitás: a kis dózisoknál nincs nekrózis: "javul" a mutáns sejtek túlélési hányada ?
- A függvény "összes" kockázatra vonatkozik, de a tumor szervekben manifesztálódik. "Primer" tumor vagy metasztázis ?
- Mennyi időn át adhatók össze a dózisok?

Effektív dózis – szöveti súlyozó tényezők

Caliburat	Testszöveti súlytényező, wr		
320491	ICRP 601	ICRP 103 ²	
Tudó	0,12	0,12	
Gyomor	0,12	0,12	
Vastagbél	0,12	0,12	
Csontvelő	0,12	0,12	
Emiő	0,05	0,12	
Ivarmirigyek	0,20	0.06	
Pajzsmirigy	0,05	0,04	
Nyelőcső	0,05	0,04	
Hólyag	0,05	0,04	
Máj	0,05	0,04	
Csont felszín	0,01	0.01	
Agy		0,01	
Bár	0,01	0.01	
Nyálmirigy		0,01	
Maradék	0,05	0,12	
Teljes	1,00	1,00	

A súlytényezők változása az ICRP #60 (1991) és az ICRP #103 (2008) között. Utóbbiak a magyar szabályozásban is szerepelnek: 487/2015. kormányrendelet

Dózis és dózisteljesítmény mérésének és számításának elméleti alapjai

Külső dózis

- Dózismérővel, dózisteljesítmény-mérővel mérhető
- Számítási egyenlet (foton-dózisteljesítményre)
- k_v dózistényezők: pontforrásra, detektoranyagra határozható meg
- Belső dózis közvetlenül nem mérhető
- Meghatározás módjai: egésztest-számlálás, vér- és exkrétum-analízis, bejutó anyagok (levegő, víz, ételek) analízise
- e(g) vagy DCF [Sv/Bq] <u>belső dózistényező</u> (dóziskonverziós tényező) egységnyi radioaktivitás inkorporációjához köthető effektív dózis
- A dózist főként a radioaktivitást hordozó anyag tartózkodási ideje (retenciója) határozza meg, függ a bevitt radioaktivitás kémiai formájától, a beviteli útvonaltól és a személy életkorától is.
- Akut (pillanatszerű) vagy krónikus (folyamatos) bevitel eltérő effektív dózist eredményeznek

Külső sugárterhelés mérése: a szövetekvivalencia

A detektort és a mérendő személyt a sugárforrástól azonos távolságba helyezve mindkettőt azonos energiafluxus éri – a dózismérőt érő dózis csak annak sugárgyengítési sajátossága miatt lehet más, mint az emberé.

Elvárás: Az abszorpciós együttható energiafüggése legyen azonos a detektorra és a testszövetre. Szövetekvivalens detektor → "energiafüggetlenség" = azonos energiafüggés a két közegre. <u>Ekkor a</u> <u>mérőeszközt és a személyt érő dózis</u> <u>aránya minden sugárzási energiánál</u> <u>azonos lesz.</u>

Külső dózis mérése

 E_v [keV]

Külső dózis mérése

Azonnali vagy összegzett válaszjelgyűjtés = Dózisteljesítmény- vagy dózismérés.

I: intenzitás (keltett jelek száma /s) η_D : dózisteljesítmény-mérési hatásfok $\left[\frac{cps}{nSv/h}\right]$

$$I_D = D \cdot \eta_D$$

$$\dot{D} = \frac{1}{\eta_D} \sum_E I(E) = \frac{1}{\eta_D} \cdot \sum_E I_0(E) \cdot \exp\left[-\mu_{BOR.} \cdot x_{BOR.}\right]$$

A detektor inaktív részében (borításában) nem keletkeznek válaszjelek, de az elnyelés csökkenti az intenzitást.

Külső dózis mérése

Ha a detektorhatásfok energiafüggetlensége nem teljesíthető, spektrális felbontás alkalmazása is szóba jöhet:

$$\dot{D} = \sum_{g} rac{I_{D,g}}{\eta_{D,g}}$$

g: energiacsoportok jele, amelyekre nézve η_D konstansnak tekinthető.

Dózisteljesítmény-mérés energiaspektrumok alkalmazásával: az egyes energiatartományokhoz azonos intenzitás/dózisteljesítményátszámítási tényezőt (hatásfokot) rendelhetünk.

Külső sugárterhelés számítása

Külső sugárterhelés: a sugárforrás aktivitásának és a detektor-forrás távolságnak ismeretében számítható. Kiterjedt forrásnál a pontszerű alapmodell módosul.

A forrás és a személy közötti közegek sugárzásgyengítő hatását az abszorpció és a másodlagos sugárzás keltését kifejező build-up tényező határozza meg.

$$\mathbf{\dot{D}}_0 = \mathbf{k}_{\gamma} \cdot \frac{\mathbf{A}}{\mathbf{r}^2}$$

$$\mathbf{D}_0 = \mathbf{c}_{\mathbf{A}} \cdot \mathbf{m} \cdot \mathbf{f}(\bar{\mathbf{r}}, \boldsymbol{\mu}, \boldsymbol{\rho}, \mathbf{V})$$

$$\mathbf{\dot{D}} = \mathbf{\dot{D}}_0 \cdot \prod_j \mathbf{B}_j \cdot \exp(-\mu_j \cdot \mathbf{x}_j)$$

j= gyengítő közegek

Belső sugárterhelés számítása

- A dózisszámításhoz az emberi "minták" (egésztest, testrész, exkrétumok) vagy a bejutó anyagok analízise szükséges.
- Az analízis akkor lehetséges, ha
- ismertek a minta összetevői, vagy azok az analízis eredményeiből meghatározhatók;
- a mennyiségi összetétel számításához <u>hatásfokkalibráció</u> áll rendelkezésre.

A bevitt aktivitás (A_{be}) általában nem azonos a testi minták méréséből kapott értékkel!

Belső sugárterhelés

A dózist az egyes szövetek eltérő egyenértékdózisainak összegzéséből kapjuk, a dózist a radioaktív anyagot tartalmazó szövetekből kiinduló sugárzás (radiation R) okozza: célpont- (target=T) és forrás- (source=S) szöveteket különböztetünk meg. (S=T is lehetséges)

Belső sugárterhelés dózisa

A dózist az egyes szövetek eltérő egyenérték-dózisainak összegzéséből kapjuk, a dózist a radioaktív anyagot tartalmazó szövetekből kiinduló sugárzás (radiation=R) okozza: célpont- (target=T) és forrás- (source=S) szöveteket különböztetünk meg. (S=T is lehetséges)

$$H_T = \left[\sum_{S} u_S \cdot \sum_{R} w_R \cdot E_R \cdot f_R \cdot Q_R (S \to T)\right] \cdot \frac{1}{m_T}$$

A H_T szöveti egyenértékdózist egy adott radioizotópra határozzuk meg. **u**_S: **az egyes forrás-szövetekben bekövetkező** <u>bomlások</u> száma [darab] w_{R:} sugárzási tényező [Sv/Gy] E_R: sugárzási energia [keV/részecske] f_R: részecske-gyakoriság [részecske/bomlás] m_T: a célpont-szövet tömege [kg] **Q az R sugárzásfajtának az S szövetből kiinduló és a T szövetben energiát Ieadó hányada (<u>elnyelési hányad</u>)** 53

Belső sugárterhelés dózisa

A radioaktív anyagot tartalmazó "forrás"-szövetekben végbemenő **bomlások száma** az inkorporáció (=bevitel) óta eltelt *t* idő alatt:

$$u_s = \int_0^t A_s(t) dt$$

 $Q_{R,S\to T} = p(\vartheta) \cdot p(abs.)$

térszögtől és a sugárzásnak a szövetek anyagában történő abszorpciójától függ:

$$p(\vartheta) \approx \frac{\vartheta}{4\pi} \qquad p(abs.)_{\alpha/\beta} = f(x_s, x_T, R_{\alpha/\beta})$$
$$p(abs.)_{\gamma/X} \approx [1 - exp(-\mu_T x_T)] \cdot \frac{\overline{\Delta E}}{E}$$

Belső sugárterhelés számítása

- Belső sugárterhelés meghatározása: a forrás- és célpontszövetekre meghatározott számítási egyenlet elemeit modellezték, és a modellből meghatározták a belső dózistényezőt (dóziskonverziós tényezőt):
- e(g) [Sv/Bq] egységnyi aktivitás "<u>pillanatszerű</u>" inkorporációjából származó effektív (lekötött) dózis [Sv/Bq] – belső dózistényező – függ az életkortól, a bevitt anyag kémiai formájától, a bevitel módjától (lenyelés, belégzés stb.)
- i: radionuklid, j: beviteli útvonal (belégzés vagy lenyelés) BE: bevitel

$$E_i = e(g)_{i,j} \cdot A_{i,j(BE)}$$

További dózismennyiségek

Lekötött dózis – committed dose (H_C): inkorporálódott, és a szervezetben 1 évnél tovább jelenlévő radioaktív anyag effektív dózisa

$$H_{\rm C} = \int_0^{\rm T} \frac{dE}{dt} dt$$

Szokásos számítás felnőttre T= 50 év, gyermekre T=70 év

Kollektív dózis: Egy embercsoport tagjainak egy adott sugárforrástól származó effektív dózisának összege.

$$\mathbf{C} = \sum_{i} \mathbf{E}_{i} \cdot \mathbf{n}_{i} \quad \text{[személy×Sv]}$$

Csak az emisszió mértékéül használható!

Példa a belső sugárterhelés számítására – ²⁴¹Am inkorporációja

2013. decemberében az RHFT radioaktívhulladék-feldolgozó telepen feldolgoztak négy, ²⁴¹Am-mal szennyezett papírhulladékot tartalmazó hordót. A hulladékot préseléssel akarták tömöríteni, ennek során a papírra tapadt radioaktivitás egy része szétporlódva kikerült, és kezdetben ismeretlen arányú külső (kiülepedés) és belső (belégzés, lenyelés) sugárterhelést okozott. Az eset kivizsgálása során meghatározták a szervezetbe jutott ²⁴¹Am-ot raktározni képes szervek sugárterhelését, és ezen át a becsült effektív dózist.

Rövid történeti áttekintés

□ 2007. április: "Javaslat új ki-be kapcsolható ²⁴¹Am(Be) neutronforrásra" – Előadás az Izotóp Intézet kft. K + F fórumán 2007–2012: Forráskészítési kísérletek az Izotóp Intézet kft. "A" szintű izotóplaboratóriumában, az I.I., az MTA Izotópkutató Intézet és a Pannon Egyetem Radiokémiai és Radioökológiai Intézete munkatársainak részvételével 2012: Az OAH támogatásával folyó kísérleti munka befejezése 2013. július: Négy közepes aktivitású radioaktív hulladékot tartalmazó hordó beszállítása Püspökszilágyra □ 2013. december 2.: A hulladék feldolgozása, ²⁴¹Am szennyezés észlelése a munkaterületen

Az ameríciumot tartalmazó radioaktív hulladék keletkezése

 Az Am(Be) pulzáló neutron forrás készítéséhez beszerzett Am-oxid aktivitása ≈ 37 GBq volt.
Feldolgozás: feloldás HCI-ban, átvitel (NH4)₂SO₄ oldatba, elektrolitikus leválasztás acéllemezekre.
A forrás hozama és fizikai formája nem volt kielégítő.

 A visszamaradt oldatot papírtörlőkkel felitatták.
A közepes aktivitású kategóriába tartozó (ILW) hulladékot 4 acélhordóban helyezték el.
Másfél év helyi tárolás után a hulladékot elszállították Püspökszilágyra.

A pulzáló Am(Be) forrás elemei

Körcikk alakú acéllemezekre "electroplating" technikával Amborítást vittek fel, amit aranyfóliával fedtek le. A kísérletsorozat befejezése után ólomkonténerben helyezték el a lemezeket.

A szennyezés észlelése és azonosítása – egésztestszámlálás

- RHK Püspökszilágy dolgozóinak egésztestszámlálása 2013. december 4-5. Az évi rendszeres ellenőrzés keretében, megállapodás szerint az MTA EK KSZ mérőállomásán
- ²⁴¹Am szennyezés detektálása 3 személynél: becsült aktivitás 49, 18, 8 kBq
- Megismételt mérések 2013. december 11-én

-- 2013.12.04

Egésztestszámlálás

egésztestszámláló-spektrum -- RHK -- 2013. december

Két felvétel egymásra vetítve az 1. és a 2. mérési sorozatból. A beütésszámokat úgy normáltuk, hogy a két 59,5 keV-os csúcs területe azonos legyen. A második mérésből **9,0, 1,8, és 0,9 kBq** inkorporált aktivitás adódott. Csak a korábban felvett spektrumon láthatók 17 keV körül a bomlásból keletkező Np karakterisztikus röntgen vonalai \rightarrow eszerint az első alkalommal mért aktivitás egy része felszíni kontamináció volt, mert az ilyen kicsi energiát a test anyaga belső terhelés esetén nagyrészt elnyeli, mint a 2. mérésnél történt.

2013. decemberben vett vizeletminták mérési eredményei

"K" minta: 0,87 Bq/I ± 4 % kitermelés: 55 % "C" minta: 0,15 Bq/I ± 10 % kitermelés: 83 % "D" minta: 0,062 Bq/I ± 14 % kitermelés: 77 %

α-spektrometria esetén az ²⁴¹Am kimutatási határa 0,005 Bq/l γ-spektrometria esetén az ²⁴¹Am kimutatási határa 1 Bq/l

A MONDAL modell használata

Az amerícium a MONDAL modell szerint viszonylag gyorsan kiürül a tüdőből. Ez a belégzéssel bejutott aktivitás dózisának számításában figyelembe vett szöveteket bemutató alábbi táblázatból is kitűnik. Ebben feltüntettük az egyes, a sugárterhelés szempontjából fontos szöveteket és ezekben az 50 éves lekötött egyenértékdózis (H₅₀) és az egy hetes "akut" egyenértékdózis (H_W) arányát.

Szövettipus	H_{50}/H_W
csontfelszin	4800
vērēs csontvelē	1700
шај	64
tūdo	5,4

A két időtartam aránya 2600:1 A tüdő felett álló detektorral felvett γspektrumokban még 2016-ban is kimutatható volt a ²⁴¹Am – vagy tartósabban kötődött a tüdőben, vagy a felsőtest csontjaiban volt jelen.

Dózisbecslés ²⁴¹Am-ra

Az IAEA EPR MEDICAL kiadványa (2005) alapján

személy	koncentráció a vizeletben (Bq/l)	felvett aktivitás (kBq)	lekötött effektív dózis (Sv)
K	0,87	19	0,7
С	0,15	3,3	0,1
D	0,062	1,4	0,05

A több éves vizsgálatsorozat (közben dekorporációs kezelést végeztek K-n) után a pontosított dózisbecslés 0,2 Sv.

Sugárvédelmi szabályozás

A sugárvédelem alapelvei

- Determinisztikus hatáshoz vezető dózis ne legyen lehetséges még súlyos baleseti helyzetben sem;
- Csak az "alkalmazásokhoz" kapcsolható dózis korlátozható, a természetes eredetű nem – a korlátozás a többletdózisra vonatkozik;
- <u>Indokoltság</u>: a sugárforrás alkalmazásának több előnye legyen, mint kára;
- <u>Optimálás</u>: az "alkalmazás" a lehető legnagyobb előnnyel kell, hogy járjon – optimális dózisszint – tervezési alap – ALARA (As Low As Reasonably Achievable);
- Egyéni <u>korlátozás</u> immissziós és emissziós korlátok át nem léphetők, ha a tervezési alap helyes volt.

Sugárvédelmi szabályozás

Nemzetközi ajánlások, irányelvek:

- Régi (1990-2015): ICRP #60 (1991) → IAEA Safety Series #115 (1996), 96/29 EU Directive
- Új ajánláscsomag: ICRP #103(2007) → IAEA General Safety Requirements GSR Part 3 (2014) és 59/2013/EURATOM direktíva
- Magyar jogszabályok: 1996. évi CXVI. tv. (atomtörvény) kisebb módosítások 2011-ben.
- Személyi sugárvédelem: 487/2015. kormányrendelet, felügyelő hatóság: Országos Atomenergia Hivatal (OAH) – több módosítás is készült azóta.
- Környezeti sugárvédelem: 489/2015. k.r. és 15/2001. KöM. rendelet, megyei kormányhivatalok környezetvédelmi osztályai
- Nukleáris biztonság: 118/2011. kormányrendelet és újabb módosításai, OAH

Sugárvédelmi szabályozás – nukleáris biztonság

Az OAH-nak – az érvényes jogszabályok szerint – véleményezési jogköre van minden olyan előterjesztés kapcsán, amely az atomenergiáról szóló törvényhez kapcsolódik. Az OAH évente jelentést készít a kormánynak és az Országgyűlésnek az atomenergia hazai alkalmazásának biztonságáról.

Sugárvédelmi korlátok

"Elhanyagolható dózis" ≤ 10 µSv/év – közvetlenül nem deklarált szabályozó → MENTESSÉG, FELSZABADÍTÁS

DL – dóziskorlát - immisszió korlátozása

effektív (lekötött) dózis; a külső és belső sugárterhelés összege foglalkozási korlát 20 mSv/év (5 év átlagában) lakossági korlát 1 mSv/év sugárvédelemmel kapcsolatos tanulmányokat folytató hallgatók 6 mSv/év tervezett, baleseti és fennálló sugárzási helyzetekre (radontól származó sugárterhelésre is) külön szabályozás a páciensdózisokat nem korlátozzák, ezek meghatározása esetenként a vizsgálatot, kezelést vezető orvos felelőssége

DC - dózismegszorítás - emisszió korlátozása: a leginkább érintett (reprezentatív) fiktív személynek az adott sugárforrástól származó effektív dózisa kiemelt létesítményekre DC = 0,1 – 0,03 mSv/év kibocsátási szinteket kell DC-ből levezetni az egyes radionuklidokra

Egy adott személy által elszenvedett dózisok összegzendők, DE a DC-k NEM ADHATÓK ÖSSZE!

Irányadó szintek a dóziskorlátozáshoz balesetelhárításban résztvevő személyek részére

Beavatkozás

Életmentés

Determinisztikus sugárhatás megakadályozása Súlyos baleset kifejlődésének megakadályozása

Nagy kollektív dózis megakadályozása

H_P(10)

< 500 mSv(*)

Magyarország: 250 mSv

< 500 mSv

< 100 mSv

(*) Ez a szint túlléphető, amikor a másokkal kapcsolatban elérhető kedvező hatás fontosabb, mint a beavatkozó személy kockázata, a beavatkozó önként cselekszik, megismerte és elfogadja a kockázatot.

Balesetelhárítás tervezése – várható és tényleges lakossági dózis, alapkritériumok (10 – 100 mSv)

Származtatott intézkedési szintek (SzISz = OIL) élelmiszerek fogyasztásának tilalmára – Országos Nukleárisbaleset-elhárítási Intézkedési Terv - OBEIT

Két, γ-spektrometriával könnyen meghatározható radionuklidot jelöltek ki: ¹³¹I-t (az első hetekben jelentős) és ¹³⁷Cs-t (hosszú felezési idejű) reaktorbalesetekből származó kibocsátásokhoz. Ha c_A<OIL7, akkor az élelmiszerfogyasztásból származó dózis <10mSv, az erre vonatkozó alapkritérium.

OIL7

1000 Bq/kg of I-131 and 200 Bq/kg of Cs-137

MONITORING OF FOOD, MILK^e AND DRINKING WATER SAMPLES Activity concentration of I-131^f and Cs-137^f in food, milk and drinking water samples
Emissziós sugárvédelmi korlátok

Az egy személybe bejutó aktivitás sokkal kisebb, mint a kibocsátható

$$DC \leq \sum_{i} (A_{\max,i} \cdot e(g)_{i})$$

A_{max}: Az adott <u>dózismegszorítás</u>nál (DC) bevihető aktivitás az egyes radionuklidokból e(g): egységnyi aktivitás bevitelétől keletkező belső sugárterhelés (belső dózistényező) $A_{i,max} << A_{i,ki}$

A normális üzemelés során kibocsátott aktivitás (<u>Kibocsátási</u> <u>korlát</u> [Bq/év]) nem koncentrálódhat egyetlen személyben.

Az emissziós korlátozás két lényegi eleme, a létesítmény környezetében élő lakosságra vonatkozó dózismegszorítás és a létesítményből

- * levegőbe és
- * vízi úton

kibocsátott aktivitás közötti kapcsolatot a **TERJEDÉSI MODELLEK** teremtik meg. A terjedés során a szennyezés hígul, de vannak dúsulást okozó részfolyamatok is. A modell és egy valóságos terjedési folyamat ⁷³

Sugárvédelmi szabályozás

Mentesség (487/2015. kormányrendelet): Nem tartozik az atomtörvény hatálya alá az a radioaktív anyag,

a) amelyben a radionuklid teljes aktivitása, vagy

b) amellyel kapcsolatos tevékenység során az anyagban előforduló radionuklid egységnyi tömegre vonatkoztatott aktivitás koncentrációja

nem haladja meg a rendelet mellékletében közölt specifikus mentességi (felszabadítási) szintet.

<u>Mentességi szint:</u> [Bq] és [Bq/g] – a legkedvezőtlenebb <u>forgatókönyv</u> mellett sem okozhat az elhanyagolhatónál (10 µSv/év) nagyobb dózist.

Már az alkalmazásnál sem kell védelmi intézkedéseket alkalmazni, mert kicsi a károsítás kockázata.

Sugárvédelmi szabályozás

Felszabadítási szint (Clearance level): 487/2015. kormányrendelet

- A hatóság által meghatározott, aktivitás-koncentráció [Bq/g] egységben kifejezett értékek, amelyeknél, ill. amelyek alatt a radioaktívan szennyezett anyagok kivonhatók a hatósági felügyelet alól, mert az elhanyagolhatónál (10 μSv/év) kisebb dózist okoznak. A rendelet mellékletében: általános mentességi (felszabadítási) szint.
- Korábban, az alkalmazásuk folyamán ellenőrzött (védelmi intézkedésekkel korlátozott) anyagok = hulladékok – az alkalmazás befejezése, valamint kezelés után lecsökkent a kockázatuk.
- Az EU vonatkozó kiadványai Bq/g (tömegkoncentráció) mellett Bq/cm² (felületi koncentráció) felszabadítási szinteket is javasolnak. Kerekítés: több komponensre vonatkozó hányados-összegzésnél kérdéses hatású.

A környezeti sugárzás monitorozásának szabályozása

489/2015. kormányrendelet (azóta többször módosítva) a lakosság természetes és mesterséges eredetű sugárterhelését meghatározó környezeti sugárzási helyzet ellenőrzési rendjéről és a kötelezően mérendő mennyiségek köréről – OKSER: Országos Környezeti Sugárvédelmi Ellenőrző Rendszer

Az ellenőrző adatszolgáltató központok segítségével végzett OKSER adatgyűjtési tevékenység minimális terjedelme: környezeti dózisteljesítmény, aktivitáskoncentráció: levegő, felszíni víz, ivóvíz, tej, egyéb élelmiszerek és takarmányok.

Jelentési szintek pl. ¹³⁷Cs-re: levegőben 3.10⁻² Bq/m³, tejben 0,5 Bq/dm³

Környezeti jelentési szintek fennálló sugárzási helyzetek felismerésére

- A környezetbe jutott radioaktivitás belső sugárterhelésének hatása ≤ a lakossági dóziskorlát. Határérték: c_L [Bq/kg]
- Meghatározása (esetenként):
- m: élelmiszerfajta
- (víz, tej stb.)
- Q: fogyasztás [kg/év]
- i: radionuklid
- Γ: biztonsági tényező >1 (max. 5)
- e(g)_i: az i-edik radionuklid inkorporációjára jellemző belső dózistényező (dóziskonverziós tényező) [Sv/Bq]

С

RL: vonatkoztatási (irányadó) szint, a dóziskorlátnál kisebb

$$_{L,m,i} = \frac{RL}{\Gamma \cdot Q_m \cdot e(g)_i}$$

Külső sugárterhelés mérési eszközei

- Dózismérés (γ- és röntgensugárzás): termolumineszcens (TL) dózismérők, filmdózismérő, elektronikus dózismérők
- Dózisteljesítménymérés: gáztöltésű detektorokkal, szerves szcintillátorral, szövetekvivalenciát jelentő kiegészítéssel ellátott egyéb detektorokkal
- Neutronok dózisának mérése: szövetekvivalenciát és a w_R energiafüggését jelentő kiegészítésekkel ellátott neutrondetektorokkal

AZ IONIZÁLÓ SUGÁRZÁSOK DÓZISÁNAK MÉRÉSI ÉS SZÁMÍTÁSI MÓDSZEREI

• Termolumineszcens detektorok – a szövetekvivalencia miatt kis rendszámú anyagokból

- dózismérés
- integrális mérés
- termolumineszcencia:
 - sugárzás hatására az elektronok alapállapotukhoz képest magasabb energiaszintre kerülnek, ahol a szabályos rács elrendezésben található hibahelyeknek köszönhetően tartósan ott is maradnak (metastabil állapot)
 - ha a besugárzott kristályt hőhatásnak teszünk ki, a metastabil centrumokban levő elektronok visszatérnek alapállapotukba fénykvantum kibocsátása mellett (lumineszcencia)
 - a kibocsátott fénymennyiség arányos a rendellenes helyre befogott elektronok mennyiségével, azaz lényegében az elnyelt dózissal
- 0,2 mGy 2 Gy (nagyobb bizonytalansággal 100 Gy) tartományban
- LiF, CaF₂, Al₂O₃ önmagukban, vagy aktivátor adalékokkal

Hatósági dózismérők Magyarországon

- TLD Panasonic UD802AT
- Igazgatás szolgáltatási díj = 2630 Ft / személy / időszak 4/2016 (III. 5.) NFM rendelet

•4 db szűrő / 4 db TL-detektor: 14 mg/cm² műanyag / Li₂B₄O₇:Cu (β , γ) 160 mg/cm² műanyag / Li₂B₄O₇:Cu (β , γ) 160 mg/cm² műanyag / CaSO₄:Tm (β , γ) 700 mg/cm² ólom / CaSO₄:Tm (γ) •E γ = 10 keV ... 10 MeV •Tartomány = 10 µSv ... 10 Sv •Kimutatási határ = 1,6 µSv (Cs-137) •Kalibrálás = 1...5 mSv •Élettartam > 1000 (7000) kiolvasás •Fading (felejtés) = 5% / év

Forrás: OSSKI, Fülöp N.

Személyi doziméterek további típusai

Hitelesített dózisteljesítménymérő-típusok

FH 40 G-L10 proporcionális kamra

- Energiaszűrt proporcionális detektor
- Energia tartomány fotonokra:
 - 30 keV 4,4 MeV
- Mért mennyiség:
 - Környezeti dózisegyenérték H*(10)
- Mérési tartomány
 - Dózisteljesítmény: 10 nSv/h -100 mSv/h
 - Dózis: 0,1 μSv 1 mSv

Hitelesített dózisteljesítménymérő-típusok

lonizációs kamrák	Victoreen 451P		
Szenzitív térfogat	230 cm ³		
Működési hőmérséklet	-20°C +50°C		
Működési páratartalom	0 to 100%		
Energia tartomány (γ)	>25 keV		
Legnagyobb dózisteljesítmény	50 mSv/óra		
Alkalmazás	Sugárvédelem		

Külső sugárterhelés számítása

Table 6.1.2 Specific Gamma Ray Dose Constants at 1 Meter

Units: Γ in (mSv/h)/MBq, μ in cm⁻¹

(After Unger and Trubey ORNL/RSIC-45 1981)

Nuclide	Half-Life	Г	μ	Nuclide	Half-Life	Г	μ
7Be	53.4d	9.292-6	1.879	59Fe	44.6d	1.789-4	0.705
11C	20.5m	1.937-4	1.695	56Co	78.8d	5.205-4	0.643
13N	10.0m	1.938-4	1.695	57Co	270.9d	4.087-5	39.800
16N	7.1s	3.984-4	0.495	58Co	70.8d	1.659-4	1.008
150	2.0m	1.940-4	1.695	58mCo	9.1h	2.637-8	528.9
18F	1.8h	1.879-4	1.695	60Co	5.3y	3.703-4	0.679
22Na	2.6y	3.620-4	0.854	60mCo	10.5m	9.057-7	0.837
24Na	15.0h	5.237-4	0.525	61Co	1.6h	2.286-5	1.706
27Mg	9.5m	1.449-4	0.869	56Ni	6.1d	2.941-4	1.002
28Mg	20.9h	2.375-4	0.763	57Ni	1.5d	2.911-4	0.681

Részlet egy sugárvédelmi adattáblázatból (The Health Physics and Radiological Health Handbook, B. Shleien, 1992.) Γ = külső dózistényező; μ = átlagos lineáris gyengülési együttható ólomban

Külső sugárterhelés csökkentése

- Idővédelem
- Távolságvédelem
- Árnyékoló anyagok alkalmazása (shielding)

Alapgeometriák dózisteljesítmény számításához: pont-, vonal- és lapforrás

Kiterjedt sugárforrás dózisterének számítása – közelítés vonal- és lapgeometriával

$$\dot{K}_{\text{Adj}}(\boldsymbol{A},\boldsymbol{r},\boldsymbol{\chi}) \cong \dot{K}_{\text{Point}}(\boldsymbol{A},\boldsymbol{r},\boldsymbol{\chi}) \times \boldsymbol{G}_{\text{Adj}}(\boldsymbol{r},\boldsymbol{L})$$

Geometriai korrekciók függése a forrás-célpont távolságtól

Module L-ER-10. Characterization of External Emergency Exposure

Fotonsugárzás árnyékolása

Árnyékolás (shielding): a sugárzás sugárzás intenzitásának csökkentése árnyékoló anyagokkal, amelyek nem vagy csekély mértékben bocsátanak ki szekunder sugárzást. Fotonsugárzásra az általános gyengülési egyenletből:

$$I = B \cdot I_0 \cdot \exp(-\mu x)$$

B: build-up = felhalmozási tényező – a szórt (szekunder) sugárzás azon része, amely a gyengítetlen nyalábbal "azonos" irányban (a mérőeszköz vagy a dózist kapó személy felé) halad

B <u>nem konstans</u>, függ a rendszámtól és (μx)-től – mindkettővel monoton nő. Táblázatokat az MSZ 62-2(2017) tartalmaz. Számítása pl.: <u>http://www.radprocalculator.com/Files/ShieldingandBuildup.pdf</u>

Felhalmozási tényezők

Magyarázó ábra a "RadPro Calculator" freeware programmal működő internetes oldalról

Build-up (felhalmozási) tényező energiafüggése

Forrás: IAEA training course Emergency Preparedness and Response 2018.

Belső sugárterhelés dózisának meghatározása

Az inkorporált radioaktív anyagok által okozott belső sugárterhelés közvetlenül nem mérhető. A meghatározás a radioaktív anyagok analízise által történhet:

- a szervezetbe bejutott radioaktivitás minőségi és mennyiségi analízise révén;
- a bejutó anyagok (belélegezhető levegő, ivóvíz, állati és emberi táplálékok) analízise révén.
- Egyik módszer sem teszi lehetővé a belső sugárterhelés dózisának közvetlen meghatározását.

Belső sugárterhelés meghatározása

- In vivo mérések: egésztest-számlálás, résztest-számlálások
- In vitro mérések: exkrétumok (vér, vizelet, széklet stb.)
- Bevihető anyagok mérése (levegő, ivóvíz, élelmiszerminták stb.)

Belső sugárterhelés meghatározása -Egésztestszámlálás

- Az ember szervezetében jelenlévő radioaktivitás meghatározása = kiterjedt sugárforrásból származó gamma-intenzitás mérése
- NaI(TI), CsI(TI), LaBr₃(Ce) szcintillációs detektorok, HP Ge félvezető detektor – gamma spektrometria
- Hatásfokkalibráció: "etalon"-sugárforrás = fantom
- Problémák: egyenetlen eloszlás a szervezetben, sűrűségkülönbségek, háttér/alapszint/üres minta (blank) definíciója és mérése – ⁴⁰K koncentrációja
- Egyszeri felvételnél a méréssel meghatározott aktivitás (A_m) biztosan kisebb, mint az inkorporált aktivitás (A_{be})!!! kiürülés az inkorporációtól kezdve folyik már.

Belégzéssel bejutó radioaktivitás számítása

CR-39 nyomdetektorral láthatóvá tett α-nyomok a levegő mintavételezésével kapott mintából

2. ábra: tipikus közepesen sűrű, nagyméretű méretű góc. 160x nagyítás.

Kis aktivitások meghatározása környezeti és biológiai mintákban

- Kis aktivitások mérésére alkalmas nukleáris analitikai mérési eljárások (belső sugárterhelés meghatározására is):
- Részecske-szelektív alfa-számlálás (ZnS(Ag) szcintillációs detektor, gáztöltésű detektorok)
- Alfa-spektrometria (PIPS detektor)
- Nyomdetektoros alfa-analízis (radonmérés) (CR-39 NTD + maratás)
- Részecske-szelektív béta-számlálás (plasztik szcintillációs detektor, folyadékszcintilláció LSC)
- Korlátozott körben energiaszelektív béta-spektrometria (ua.)
- Gamma-spektrometria szcintillációs vagy félvezető detektorokkal (NaI(TI), CsI(TI), LaBr₃(Ce), BGO, HP Ge)

PIPS-detektorral felvett α-spektrum együttlecsapással készített Am-tartalmú mintáról

²⁴³Am: ismert aktivitású nyomjelző (spiking) a kémiai kitermelés megállapításához

BGO – bizmut-germanát szcintillációs detektor

Prototype BGO Detector

Analitikai detektorok mérési paramétereinek meghatározása - Kalibrációk

A/ Sugárzás- és energiaszelektivitás – minőségi analízis

Sugárzás-szelektivitás: jelalak és/vagy jelnagyság alapján Energia-szelektivitás: jelnagyság alapján

Detektorrendszer: detektor + analóg eszközök + analizátor (MCA) detektor/analóg kimenőjel: impulzusok – nagyság és gyakoriság jellemzi őket.

Detektorok válaszjeleinek gyakoriság-eloszlása a jelek (impulzusok) nagyságának (=az elnyelt részecske által leadott és egy válaszjelet eredményező energia mennyiségének) függvényében: SPEKTRUM.

Regresszió a csatornaszám / energia – függvény meghatározására:

$$\chi_{r}^{2} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(c_{i} - f(E_{i}))^{2}}{\sigma_{i}^{2}}$$

n: mérési pontok száma, p: az f(E) függvény együtthatóinak száma, c: spektrum jellemző pontja [csatornaszám], E: gamma-energia [keV] az izotóptáblázatból, σ_i az i-edik csúcs centrumának varianciája, azaz leolvasásnak bizonytalansága. X²_r: redukált maradványnégyzet-összeg (khi-négyzet)

$$f(E_i) = p_2 \cdot E_i^2 + p_1 \cdot E_i + p_0$$

B/ Hatásfok – mennyiségi analízis

Regresszió a hatásfok / energia – függvény meghatározására

Hatásfok: <u>megszámolt</u> részecske összes

Gammasugárzásra:

η: számlálási hatásfok, I_m : az adott radioizotóptól származó megszámolt jelek száma időegység alatt (intenzitás = az azonosított teljesenergia-csúcs területe és a mérési idő hányadosa), A: aktivitás, fγ: gamma-gyakoriság

$$\eta = \frac{I_m}{A \cdot f_{\gamma}}$$

Kis aktivitások meghatározása környezeti és biológiai mintákban – detektorok kalibrációs függvényei

1

$$\chi_r^2 = \frac{1}{n - k - 1} \sum_{i=1}^n \frac{[\ln(\eta_i) - \sum_{j=0}^k p_j \cdot \ln(E_i)^j]^2}{\sigma_{\ln \eta_i}^2}$$

Kétszer logaritmikus kalibrációs polinom Hatásfok – gammaenergia függvény Tapasztalat szerinti legelőnyösebb megoldás: k=3, két "paraméter-sorozat" $E \le E_{C.O.}$ és $E > E_{C.O.}$ esetekre. C.O.: "cross-over" energia, ahol a hatásfok értékét meghatározó domináns fizikai folyamatok "egymásba fűződnek".

Gammaspektrum kiértékelése - hatásfokfüggvény

C/ Felbontóképesség – a mennyiségi és a minőségi analízis előfeltétele, hogy az egyes spektrumcsúcsok (gamma, alfa) egymástól kellően szeparálva legyenek.

Félértékszélesség (F) – a csúcs szélessége a csúcsmagasság felénél: az adott abszcisszákhoz tartozó ordináták különbsége. Kifejezhető csatornaszámban, energiában és relatív számként:

$$F_{rel} = \frac{F}{c_o}$$

Detektorok sajátosságai felbontóképesség

A gammavonalak csúccsá szélesedésének oka a detektorban végbemenő bemenőjel – kimenőjel – transzformáció bizonytalansága. (Ennek egyik tényezője az un. Fano-faktor, a szilárdtest-detektorok mikroszkópikus inhomogenitását kifejező tényező) Ez az ún. "vízszintes" szórást okozza, amely a spektrum vízszintes tengelye mentén jelent szélesedést. A "vízszintes" szórás (félértékszélesség) függ a gammaenergiától:

$$F_i \approx \sqrt{a \cdot E_i + b}$$

A nukleáris statisztikus szórás következtében a mért beütésszámok értéke is bizonytalan. A beütésszám a spektrum függőleges tengelyén ábrázolandó, ezért ezt "függőleges" szórásnak nevezhetjük. A két hatás lényegében független egymástól.

Mérési bizonytalanság, hibaterjedés

Nukleáris statisztikusság = A spektrumokban "függőleges" szórást eredményez, n=egy adott radionuklidhoz rendelt beütésszám

$$\operatorname{Var}(n) = \sigma_n^2 = n$$

Hibaterjedés – Propagation of error – csak <u>közelítés</u> a sorba fejtés 1. tagjának alkalmazásával:

$$\operatorname{Var}(Z) \approx \operatorname{Var}(X) \cdot \left(\frac{\partial Z}{\partial X}\right)^2$$

Mérési bizonytalanság, hibaterjedés - alkalmazások

- 1 1 minta- és háttérmérés, összes beütésszám (spektrometria vagy időben gyorsan változó aktivitás mérése esetén)
 - N = S B

$$Var(N) = Var(S) + Var(B) = S + B$$

$$r_{N} = \frac{\sigma_{N}}{N} = \frac{\sqrt{S+B}}{S-B}$$
 $Var(N) \approx Var(S) \cdot \left(\frac{\partial N}{\partial S}\right)^{2} + Var(B) \cdot \left(\frac{\partial N}{\partial B}\right)^{2}$

Intenzitás relatív szórása:

$$\begin{split} \mathbf{I} = & \frac{\mathbf{N}}{t_{_{\mathbf{M}}}} & \text{Szórás = bizonytalanság = hiba = Var(n)^{1/2}} \\ \mathbf{r}_{_{\mathbf{I}}} = & \mathbf{r}_{_{\mathbf{N}}} & \text{Scatter = uncertainty = error} \end{split}$$
Több (*n*), egymást követő háttérmérés eredő bizonytalansága - beütésszámok összegzése átlagos háttér vagy ROI – *region of interest* kiszámításához.

$$\overline{B} = \frac{1}{n} \cdot \sum_{i=1}^{n} B_{i}$$

$$Var(\overline{B}) = \frac{1}{n^{2}} \cdot \sum_{i=1}^{n} Var(B_{i}) = \frac{1}{n^{2}} \cdot \sum B_{i} = \frac{\overline{B}}{n}$$

$$r_{\overline{B}} = \frac{\sigma_{\overline{B}}}{\overline{B}} = \frac{\sqrt{\frac{\overline{B}}{n}}}{\overline{B}} = \frac{1}{\sqrt{\overline{B} \cdot n}}$$

Több, egymást követő háttérmérés, összes beütésszám

Alternatíva: tapasztalati szórás

$$s_B^2 = \frac{\sum (B_i - \overline{B})^2}{n - 1}$$

$$s_{\overline{B}}^2 = \frac{\sum (B_i - \overline{B})^2}{n \cdot (n - 1)}$$

$$r_{\overline{B}} \approx \frac{s_{\overline{B}}}{\overline{B}} = \frac{\sqrt{\frac{\sum (B_i - \overline{B})^2}{n \cdot (n - 1)}}}{\overline{B}} = \frac{\sum B_i^2 - n \cdot \overline{B}^2}{n \cdot (n - 1) \cdot \overline{B}^2}$$

Szorzat- és hányadosfüggvények varianciája :

Ha X és Y független mennyiségek: Cov(X,Y)=0 $Z = X \cdot Y$ $Var(Z) \approx \left(\frac{\partial Z}{\partial X}\right)^2 \cdot Var(X) + \left(\frac{\partial Z}{\partial Y}\right)^2 \cdot Var(Y)$ $Var(Z) \approx Y^2 \cdot Var(X) + X^2 \cdot Var(Y)$ $\frac{Var(Z)}{Z^2} \approx \frac{Y^2 \cdot Var(X)}{V^2 V^2} + \frac{X^2 \cdot Var(Y)}{V^2 V^2}$ $r_z^2 = r_v^2 + r_v^2$

Szorzat- és hányadosfüggvények varianciája - Alkalmazás a hatásfok bizonytalanságának számítására:

Behelyettesítve, és a relatív varianciákat kifejezve:

 $\eta = \frac{I_m}{A \cdot f_{\gamma}}$

$$r_{\eta}^{2} = r_{I_{m}}^{2} + r_{A}^{2} + r_{f_{\gamma}}^{2}$$

Logaritmikus transzformáció:

$$Var(\ln(x)) = \left(\frac{\partial \ln(x)}{\partial x}\right)^2 \cdot Var(x) = \frac{1}{x^2} \cdot Var(x) = r_x^2$$

Alkalmazás: hatásfok – gammaenergia kétszer logaritmikus függvény illesztése

Kis aktivitások meghatározása

Spektrumok feldolgozása

- Közvetlen kiértékelés: csúcsok centrumának és intenzitásának meghatározása
- Közvetett kiértékelés: a sugárzási energia meghatározása, izotópazonosítás, aktivitás kiszámítása

Csúcsterület

Közelítő terület: a ROI tartományában lévő összes beütésszám, levonva belőle más, nagyobb energiájú csúcsok Compton-tartományát: trapézmódszer

$$N \approx \sum_{i=L}^{R} y_i - \frac{y_R + y_L}{2} \cdot (R - L + 1)$$

 N: a csúcs területe (= beütésszámok összege), R, L : határcsatornák sorszáma, y-ok a beütésszámok (csatornatartalmak).
 Összegzéssel csak a különálló csúcsok területe számítható, az átfedések felbontása csak alakfüggvény-illesztéssel oldható meg.

Ha a "vízszintes" szórás véletlenszerű, szimmetrikus torzulást okoz a jelkonverzióban, akkor a teljes energia-abszorpció által létrejövő spektrumcsúcsok alakja Gauss-jellegű lesz:

$$G(x) = \frac{N}{\sqrt{2\pi} \cdot \sigma} \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}} = y_0 \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 σ a Gauss-görbe szórása (az inflexiós pontok közötti szélessége), μ a görbe (csúcs) centruma,

x az egyenlet szerint folytonos, a valóságban nyilvánvalóan diszkrét független változó, azaz a sokcsatornás analizátor csatornaszáma, y₀ az amplitúdó, N a Gauss-integrál = csúcsterület

- A tényleges γ- és α-csúcsalakok aszimmetrikusak, elsősorban a csúcs baloldalán eltérnek a Gauss-profiltól.
- Az "alapvonal" elegendően "keskeny" csúcs esetében a csatornaszám lineáris vagy esetleg parabolikus függvényeként közelíthető:

B(x)=a.x+b

- a detektor-konverziós folyamatok pontos fizikai leírásával más alakzatok (pl. lépés- (erf(x)) függvény) is bevezethetők.
- Ha a csúcsok átfednek, az átfedő csúcsokat közös ROI-ban foglaljuk össze. A spektrumcsúcso(ka)t és az alapvonalat magában foglaló "válaszfüggvény" (response, R) az átfedő (esetleg módosított) Gauss-profilok és a közös alapvonalfüggvény összege:

$$R(x) = \sum_{p} G(x) + B(x)$$

Az R függvény paraméterei regresszióval határozhatók meg. A regressziós maradvány-négyzetösszeg előállításához a ROI-nak legalább n=m +1 pontból kell állnia (csúcsonként legalább 3, lineáris alapvonalnál további 2 paraméter m=3×p+2).

$$\chi^{2} = \sum_{i=1}^{n} \frac{[y_{i} - R_{i}]^{2}}{\sigma_{y_{i}}^{2}}$$

Csúcsonként két paraméter: centrum és szélesség "rögzíthetők" – egyszerűsödhet az illesztés.

Csúcskeresés

Az illesztés a Gauss-függvény szórását és centrumát illetően nem linearizálható, így csak a paraméterek előzetes, pontos becslését feltételező iterációs regresszióval lenne megoldható.

- Egyszerűsíthető a feladat, ha a két nemlineáris paramétert külön eljárásban, az ún. csúcskeresés során rögzítjük.
- Az "együttes illesztés" elvileg is megkérdőjelezhető.

A Gauss-csúcsalakfüggvény és deriváltjai

A csúcs centrumának megfelelő csatornában a Gaussgörbe első deriváltja előjelet vált pozitívból negatívba, a második derivált centrális tartománya (azaz |x-μ|<σ) negatív, a minimum helye a csúcs centruma. A deriváltakat a mért spektrum beütésszámainak felhasználásával, numerikus konvolúcióval elő lehet állítani.

$$G'(x) = -\frac{x-\mu}{\sigma^2} \cdot y_0 \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
$$G''(x) = \frac{(x-\mu)^2 - \sigma^2}{\sigma^4} \cdot y_0 \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Közvetlen spektrumkiértékelés csúcskeresés

Centrum helye: 1. derivált zérushelye

$$G'(x) = -\frac{x-\mu}{\sigma^2} \cdot y_0 \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Centrum helye: 2. derivált negatív minimuma

$$G''(x) = \frac{(x-\mu)^2 - \sigma^2}{\sigma^4} \cdot y_0 \cdot e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Közvetlen spektrumkiértékelés csúcskeresés

"Simítás" (smoothing) – numerikus konvolúció

$$s_i^{(k)} = \sum_{j=-w}^{+w} c_{k,j} \cdot y_{i+j}$$

Simítás = a szomszédos pontos súlyozott átlagaként (lineáris kombinációjaként) előállítható a spektrum 0., 1., 2. ... deriváltja "Ablakszélesség" = 2w+1

Alkalmas

- A csatornatartalmak "függőleges szórásának" csökkentésére;
- A spektrum numerikus deriváltjainak előállítására
- A simított adatok varianciájának számítására

$$Var(s_{i}^{(k)}) = \sum_{j=-w}^{+w} c_{k,j}^{2} \cdot y_{i+j}$$

Példa a simításra: egyszerű numerikus deriválás – a szomszédos csatornákban lévő beütésszámok különbségének átlaga

$$y_{i}^{\cdot} = \left(\frac{(y_{i+1} - y_{i}) + (y_{i} - y_{i-1})}{2}\right) = \frac{1}{2} \cdot (y_{i+1} - y_{i-1})$$

Közvetlen spektrumkiértékelés csúcskeresés

Csúcskeresés a simított spektrumokból

Ha a c tényezőket szórással nem terhelt konstansoknak tekintjük, akkor a 0. illetve 2. deriváltra alapozott csúcskeresés (ct. = centrum kijelölése) az egymást követő alábbi értékek maximumának kiválasztásával oldható meg:

$$\frac{s_i}{\sqrt{Var(s_i)}}$$

$$ct. = \frac{\sum_{w} i \cdot \frac{S_i}{\sqrt{Var(s_i)}}}{\sum_{w} \frac{S_i}{\sqrt{Var(s_i)}}}$$

Közvetlen spektrumkiértékelés

Csúcsterület meghatározása módosított Gauss-függvénnyel közelített aszimmetrikus csúcsalaknál:

Közvetett spektrumkiértékelés

Gammaenergia, Izotópazonosítás (csatornaszám/energia kalibrációval)

Csúcsterület

Centrum

Inter azor (hata

Intenzitás, aktivitásszámítás az azonosított izotópokra (hatásfok/energia kalibrációval)

Bizonytalanság számítása KÖTELEZŐ! Eldöntendő, hogy egy feltételezett komponens jelenléte, illetve mennyisége szignifikáns-e →A bizonytalanság alapján!

Gammaspektrum kiértékelése - izotópazonosítás

00142-30cm-pot --- GSANAL - REPORT ---

Spectrum file: D:\gsanal_win\gsanal-win-0806\00142-30cm

Livetime = 134 s TrueTime = 300 s DeadTime = 123.88 %

Roi#	Centre (ch)	Energy (keV)	LM	RM	Peak Area	Intensity (cps)	Error (%)	Isotope
1.	309.1	123.7	304	315	3.509e+004	2.619e+002	6.8	Ba-131,Co-57
2.	333.4	133.4	326	338	3.899e+003	2.910e+001	28.6	Ce-144,Hf-181
з.	540.1	215.8	534	546	2.922e+004	2.180e+002	5.4	Ba-131
4.	624.3	249.3	619	629	4.272e+003	3.189e+001	32.1	Xe-135
5.	934.8	373.1	928	940	1.490e+004	1.112e+002	11.2	Ba-131
6.	1209.0	482.4	1202	1215	3.123e+003	2.331e+001	31.1	Hf-181
7.	1243.6	496.2	1237	1250	4.722e+004	3.524e+002	3.9	Ba-131,Ru-103
8.	1280.1	510.7	1272	1289	1.263e+004	9.425e+001	9.9	Annih.
9.	1413.7	564.0	1407	1420	1.837e+006	1.371e+004	4.2	Sb-122
10.	1510.6	602.6	1504	1518	1.258e+006	9.389e+003	4.1	Sb-124
11.	1618.9	645.8	1612	1628	9.043e+004	6.749e+002	3.8	Sb-124
12.	1736.4	692.6	1730	1745	8.922e+004	6.658e+002	3.8	Sb-122
13.	1777.9	709.1	1772	*	1.601e+004	1.195e+002	4.4	Sb-124
14.	1789.1	713.6	*	1796	2.536e+004	1.892e+002	3.4	Sb-124
15.	1811.7	722.6	1805	1819	1.240e+005	9.257e+002	3.9	Sb-124
16.	2427.5	968.0	2420	2438	1.878e+004	1.402e+002	4.9	Sb-124
17.	2620.4	1044.9	2613	2631	1.623e+004	1.211e+002	6.1	Sb-124
18.	2859.8	1140.3	2851	2867	1.257e+004	9.377e+001	5.7	Sb-122
19.	3151.9	1256.7	3143	3159	1.293e+004	9.646e+001	4.6	Sb-122
20.	3324.0	1325.3	3313	3334	1.360e+004	1.015e+002	6.0	Sb-124
21.	3398.6	1355.0	3391	3408	8.359e+003	6.239e+001	6.0	Sb-124
22.	3431.5	1368.1	3422	*	2.215e+004	1.653e+002	4.3	Na-24,Sb-124
23.	3451.0	1375.9	*	3461	3.645e+003	2.721e+001	11.4	Sb-124
24.	3602.8	1436.4	3596	3611	9.721e+003	7.255e+001	7.0	Sb-124
25.	3827.8	1526.0	3820	3835	3.643e+003	2.719e+001	12.0	K-42
26.	4241.3	1690.8	4232	4256	3.464e+005	2.585e+003	3.1	Sb-124
27.	5245.3	2090.8	5235	5258	3.369e+004	2.514e+002	4.0	Sb-124
28.	6909.1	2753.5	6900	6918	2.890e+002	2.162e+000	23.7	Na-24

128

Gammaspektrum kiértékelése – mennyiségi azonosítás

	Isotope	Activity	Error
	-	(Bq)	(%)
1.	Ba-131	1.03E+006	4.31E+000
2.	CO-57	3.21E+005	6.84E+000
3.	Ce-144	2.54E+005	2.86E+001
4.	Hf-181	5.59E+004	2.89E+001
6.	Ru-103	5.56E+005	3.91E+000
7.	Sb-122	2.82E+007	1.60E+000
8.	Sb-124	1.46E+007	7.83E-001
9.	Na-24	9.23E+003	2.37E+001

Szignifikancia - kimutathatóság

L_c="critical level" az a nettó beütésszám, aminek elérése esetén igazoltnak tekintjük az adott radionuklid jelenlétét a vizsgált mintában. Az L_c-re alapozott vizsgálat utólagos (a posteriori) kritériumvizsgálat.

<u>Elsőfajú hiba</u>: a mintában nincs jelen a keresett nuklid, mi mégis igazoltnak véljük jelenlétét, mert elegendően "soknak" ítéljük a mért nettó beütésszámot (csúcsterületet). L_C értékének megfelelő **nettó** beütésszám regisztrálása esetén legfeljebb α lehet annak a valószínűsége, hogy elsőfajú hibát követünk el. Minden α értékhez tartozik a normalizált normális eloszlásból egy k_α-érték, amelynél a normalizált normális

Normalizált normális eloszlás: Gauss-eloszlás $I(integrál)=1, \mu=0$ és $\sigma=1$ helyettesítéssel

$$G_n(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{\frac{-(x-0)^2}{2}}$$

$$\int_{-\infty}^{k_{\alpha}} G_n(x) = 1 - \alpha$$

ha 1- α = 0,95, akkor k_{α}= 1,645 "95 %-os megbízhatósági szint" ha 1- α = 0,999, akkor k_{α}= 3,05 ha 1- α = 1-10⁻⁸, akkor k_{α}= 6,25 Forrás:

http://vati.szie.hu/datadir/content/file/jegyzetek _segedletek/ba/normális_eloszlás_táblázat.jpg

- A nukleáris bomlásból származó detektor-válaszjelek mérésénél
 - akkor, amikor a keresett radioizotóp valójában nincs jelen a mintában - az alapszint (háttér) eloszlásának egyes kimeneteleit mérjük.
- A mért jelszám <u>S</u>, az alapszint (háttér) <u>B</u>, különbségük, a nettó jelszám <u>N</u> várható értéke μ=0. Mivel S≈B, σ_S≈(B)½

Az alapszint mérési bizonytalansága $\sigma_{\rm B}$.

 $N(\mu=0)=S-B$

A kritikus szint, L_C definíció-egyenlete:

$$\sigma_{0} = \sqrt{\sigma_{S}^{2} + \sigma_{B}^{2}} \cong \sqrt{B + \sigma_{B}^{2}} \cong \sqrt{2B}$$

$$r_{LC} = \frac{\sigma_{0}}{L_{C}} \equiv \frac{1}{k_{\alpha}} \xrightarrow{\text{Az } \underline{L_{c}\text{-vel azonos nagyságú}}}{\operatorname{nettó beütésszám/csúcsterület}}$$

 α =5% elsőfajú hibához r_{LC}=61% tartozik.

relatív bizonytalansága 134

 L_{D} ="detection level" az a "valódi" jel = nettó beütésszám, amely, ha jelen lenne a mintában, β-nál nem nagyobb valószínűséggel eredményezne L_C-nél kisebb, tehát a jelenlét elutasítását maga után vonó mért nettó jelszámot. Az L_D-re alapozott vizsgálat megelőző (a priori) kritériumvizsgálat.

Másodfajú hiba: a mintában jelen van a keresett nuklid, mi mégis elvetjük a jelenlétét elismerő hipotézist. Tehát L_D –nyi aktivitás jelenléte esetén β -nál nem nagyobb valószínűséggel adódna másodfajú hiba. A mért nettó beütésszámok eloszlását ábrázoló függvény ordinátáján a $\mu = L_D$ várható értékű és σ szórású Gauss-eloszlás integráljának β hányada lesz L_C-nél kisebb.

L_D definíció-egyenlete:

$$L_D = L_C + k_\beta \cdot \sigma_{L_D} = k_\alpha \cdot \sigma_0 + k_\beta \cdot \sigma$$

 L_D a mért S bruttó beütésszám és a B alapszint különbsége, tehát S = L_D + B, és innen az L_D -vel azonos nagyságú nettó beütésszámra:

$$Var(L_D) = \sigma^2 = S + \sigma_B^2 = L_D + B + \sigma_B^2 = L_D + \sigma_0^2$$

L_D általános esetben:

$$L_D = L_C + k_\beta \cdot \sqrt{L_D + \frac{L_C^2}{k_\alpha^2}}$$

A fenti másodfokú egyenletet $k_{\alpha} = k_{\beta} = k$ helyettesítéssel megoldva ezt kapjuk:

$$L_D = 2L_C + k^2$$

A "detektálási határ" (L_D) értelmezése – az ábrát Halász Máté készítette Gyakoriság

analízisnél: 5 %

139

Mennyi lehet az L_D-nyi beütésszám relatív hibája?

$$r_{L_{D}} = \frac{\sqrt{2k\sqrt{B}(1+\frac{1}{n}) + k^{2} + B(1+\frac{1}{n})}}{2k\sqrt{B}(1+\frac{1}{n}) + k^{2}}$$

Behelyettesítünk α = β -t, valamint "n" számú alapszint-(háttér-)mérést feltételezünk. Ha n=1 és $\alpha = \beta = 5$ %, az alábbi két jellemző érték adódik: ha B=1, a relatív szórás 42%, ha B=10000, a relatív szórás 31%.

Mi a különbség L_C és L_D között?

- L_C utólagos kiértékelés = a lehetséges értékek sokaságának egy <u>adott</u> eleme (az eloszlás egyik, adott valószínűséghez tartozó kimenetele)
- L_D előzetes kiértékelés = a lehetséges értékek <u>várható értéke</u> (az egyenként ismeretlen adatok eloszlásának középértéke)

Szignifikancia – a kinagyított területen egy "nagy" és egy "bizonytalan" csúcsot látunk

142

Szignifikancia – az elfogadott gamma csúcsok relatív bizonytalansága jobb, mint 61%

0	licrosoft PowerPoint - [sv-II-draft]	
: 🔯	📓 GSanal for WIN D:\gsanal_win\gsanal-win-0806\modif-0807.gil	Kéi
1	File Evaluation View Help	
i A		
1 🗐 / v. 85	Roi# Centre Energy Peak Area Intensity Error Isotope (ch) (keV) (cps) (%) 4. 123.6 84.6 8.550e+002 9.901e-003 29.1 T1-208,T 5. 127.6 87.4 5.860e+002 6.786e-003 30.9 Pb-214,P 6. 135.1 92.6 8.610e+002 9.970e-003 29.1 Bi-214	h- b-
86		
87		
88		
89		
90		
	HUHH 4 * 6 11 11 13 * 2640 X: 103 * 151 Cursor: 123, 84.2 KeV * 1619 counts Live1: 86400's Dead1: 0.02 %	

143

Szignifikancia - kimutathatóság

- Hogyan határozzuk meg egy, a spektrumban nem látható radioizotóp kimutatható aktivitását?
- A várható csúcs centrumának és szélességének számítása a kalibrációkból
- 2. L_C számítása a mért spektrumból ("B" kijelölése!)
- L_D számítása L_C-ből [beütésszám]
- 4. Átváltás aktivitásra [Bq]

Ellenőrzés: az így definiált csúcs <u>generálása</u> a spektrumban, felismerése a csúcskereső rutinnal.

Ez csak a detektor teljes válaszfüggvényét modellező programmal lehetséges!

