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1 Introduction

The most rapidly improving medical imaging modality of the last decades is Magnetic Res-
onance Imaging (MRI). With MRI one can perform measurements with different contrast,
and also with different goals. Imaging of anatomy can be performed measuring proton
density, or acquiring magnetization relaxation (T1 and T2 relaxation) maps. Functional
imaging can be performed by measuring the blood-oxigen-level contrast (BOLD signal)
in the brain either as a response to external stimuli, or in resting state. Functional con-
nectivity matrices can be used to describe the relationship of resting-state activations of
brain regions.

Machine Learning is another rapidly evolving field of computer sciences, beginning to
intersect with a variety of fields of natural sciences. Some examples are bioinformatics,
astronomy, and cognitive sciences. Machine Learning is knowingly a data-driven disci-
pline, thus, with the increasing number of available fMRI measurements, application of
such learning algorithms becomes relevant.

Machine Learning models called Convolutional Networks have been used on connec-
tivity matrices to predict diagnosis of Autism Spectrum Disorder [1], Amnestic Mild
Cognitive Impairment [2], and to estimate brain age [3]. The goal of this thesis is to
develop methods to generate convincing synthetic data with special generative models,
called Generative Adversarial Networks (GANs) [4].

First, we will cover the theoretical basis of resting state fMRI connectivity matrices.
Then, we dive into the details of the classification algorithms, followed by the theory of
Generative Adversarial Networks. We explain the difficulties of properly training GANs,
and offer a solution to this problem, trough evaluating thorough experiments.

The repository of our code is available online:
https://github.com/hajduistvan/connectome_gan.
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2 Introduction to fMRI connectivity matrices

In the following sections, we will cover the basic principles used in functional MRI, assum-
ing that the reader is familiar with magnetic resonance imaging. After that, we discuss
resting-state fMRI, and how the functional connectivity matrices can be derived from
such measurements.

Unlike in anatomical imaging, where the image is constructed by measuring proton
density and relaxation times, a functional MRI image is aquired by measuring the so-
called blood-oxygenation-level dependent (BOLD) signal. The mechanism is as follows:
since the neurons do not have oxygen and glucose reservoirs, neural activity induces a
reaction in the nearby blood vessels, releasing more oxygen to them than to inactive
neurons. Since oxygenated hemoglobin is diamagnetic, and deoxygenated hemoglobin is
paramagnetic, this change of magnetic susceptibility can be measured by the MR scanner
[5]. The most commonly used fMRI sequence is the EPI, whose description is out of the
scope of this thesis. The BOLD signal can be seen on Figure 1.

Figure 1: The BOLD signal and neural activity [6].

In event-related fMRI, the patient is given a particular task, and our goal is to gain
knowledge about the brain’s activity during this task. In resting-state fMRI, however,
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no task is given to the patient. During this measurement, we can identify aspects of
intrinsic brain activity, meaning synchronous BOLD signal changes in multiple brain
regions. These brain regions can be organized into network modes, which consists of
strongly correlated brain regions. Figure 2. shows some examples of these networks.

Figure 2: Taking a seed region denoted with blue circles, we can generate correlation maps
of brain regions that share similar neuronal activity to that of the seed. Six of the major
networks can be seen here: visual, sensorimotor, auditory, default mode, dorsal attention,
and executive control. The scale numbered 0–7 indicates relative correlation strength. [7]

In order to reduce resting state fMRI time series to connectivity matrices, generally,
we need to take the following steps:

1. Acquire fMRI time series

2. Define ROIs based on a brain atlas: either single brain regions (e.g. based on
Harward-Oxford cortical and subcortical structural atlas [8]), or a network of brain
regions
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3. Average BOLD signal in each ROI for every timestep

4. Calculate time-dependent correlation metric of choice (e.g. full normalized temporal
correlation) for each pair of regions

5. Use correlation coefficients as corresponding matrix elements

In Figure 3, we can see an example for the resulting connectivity matrices. In short, we
can view connectivity matrices as a way to compress functional connectivity measurements
into a small, intuitive, and algorithmically easy-to-handle form.

Figure 3: Connectivity matrix examples from our dataset, where a female (left), and a
male (right) patient’s connectivity can be seen. Both matrices are constructed from 55
ROIs.

The technical details of connectivity matrix acquisition is left to Section 4.1, since
it is applicable only to those who use the same dataset, and this way omitted from the
general discussion. It is important to mention that the goal of this thesis is not to discuss
the origins and neurological aspects of these matrices, but to use them as inputs to our
algorithms. Thus, the introduction to the connectivity matrices was kept brief, tough the
referenced sources may supply with additional knowledge.

In the following sections, we dive into the main driver topics of this thesis, neural
networks.
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3 Introduction to Generative Adversial Networks

In this section we dive into the theoretical foundations of my thesis. First, we cover Neural
Networks (NNs) and their most used application: classification. After that, we cover the
basic theory of General Adversarial Networks (GANs), including the issues regarding to
their training.

3.1 Neural Network paradigm

Machine Learning has gained immerse popularity with the rediscovery of Neural Networks.
In the 1980’s, Hinton et. al. proposed back-propagation[9] as an optimization method for
parametric models, that is used until today in Deep Learning. In short, Neural Networks:

1. Represent a parametric, differentiable function f(x,w)

2. Are a composition of simple functions, called layers:

f(x, [w1, ...,wN ]) = (fN ◦ ... ◦ f1)(x)

In orded to optimize Neural Networks, a loss function must be defined, which measures
the goodness of the network’s output. The optimization happens via Stochastic Gradient
Descent (SGD), minimizing L:

w(t+1) = w(t) − µ
∂
(

1
M

∑M
i=1 L

(
f(xi,w

(t))
))

∂w(t)
, (1)

where µ ≥ 0 is called the learning rate. The average of the loss values overM examples
covers the stochastic part of SGD, meaning we calculate the loss over a batch of samples
sized M . In each iteration, a new batch of inputs is used.

The most common layers used to construct NNs fall into 3 categories:

1. Linear functions with trainable parameters (w): these layers are responsible for
learning the proper transformations to achieve the appropriate output. Two of the
most widely used such layers:

Fully Connected layer: matrix multiplication of the weights and the inputs:
xj+1 = Wjxj. They can represent arbitrary linear transformation of their
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inputs, at the cost of having many trainable parameters, usually more than
necessary.

Convolutional layer: convolution of the inputs and the weigths as kernel:
xj+1 = xj ∗Wj. They are best for structured, grid-like data, like images.
Parameter sharing over the image means fewer parameters need to be trained.
Good when we have á priori information about the dependencies of the pixels,
e.g. in images only a small local area is needed to process per layer to find
meaningful features.

2. Nonlinear functions that have no trainable parameters: they are needed so the whole
NN has higher complexity than linear functions. Usually used after each layer.

3. Normalizing and regularizing layers: They are used to aid optimization. We do not
use these in out work.

3.2 Classification and Regression with Neural Networks

Supervised learning tasks involve labeled input data denoted (xi, yi), and the NN is trained
to match its input to the corresponding label. For sample i the network’s prediction is
f(xi,w) = ŷi. Two branches of supervised learning are classification and regression. In
regression, labels are real numbers. In this case, one of the appropriate loss functions are
the mean squared error (MSE):

L(yi, ŷi) = (yi − ŷi)2 (2)

In classification, on the other hand, the labels are discrete categories: yi ∈ 0, 1, ..., S.
In practice, these labels are one-hot encoded. This means that the label is a vector
full of zeroes except at the index corresponding to the label’s category, for example:
yi = s ⇐⇒ yij = δjs. From now, we can interpret yi as a categorical probability density
with deterministic outcome si. If we construct our classificator NN to output a categorical
density as label prediction, we can measure the distance between the predicted and real
labels as the cross-entropy of two probability distributions:

L(yi, ŷi) = −
S∑
j=0

yij log ŷij (3)
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3.3 Generative Adversarial Networks

Unlike supervised learning, unsupervised learning is a task where we use NNs regarding
the p(x) distribution of the data. This can include clustering, or more relevant to us,
generative models. Generative models are used to estimate said p(x) distribution, and
provide ways to artificially generate elements of this distribution. One popular approach
to this problem is called the Generative Adversarial Network (GAN).

Goodfellow et. al. [4] proposed this type of network to be composed of two competing
sub-networks:

Generator: denoted as g(z,wg), the generator is a neural network that takes a
latent random variable z and outputs an artificial sample x̂:

g(z,wg) = x̂

Discriminator: denoted as d(x,wd) it is also a neural network that takes samples
as input and outputs the probability that the input came from the data distribution
rather than from the generator:

d(x,wd) = P (x ∈ Xdata)

During training, d is optimized to give good estimates whether the data is real or
generated, while the generator is trained to "fool" the discriminator. This leads to a
2-player min-max objective:

max
wd

min
wg

L(wg,wd) = log(d(x,wd)) + log(1− d(g(z,wg),wd)) (4)

For clarity regarding practical implementation via SGD see algorithm 1:
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◦ Select hyperparameters k, µg, µd M , λ
◦ Initialize wg and wd weights
for Nit steps do

for k steps do
◦ Sample batch of noise samples {z1, ...,zM} from noise prior pg(z)

◦ Sample batch of real data samples {x1, ...,xM} from pdata(x)

◦ Update discriminator weights to maximalize L:

w
(t+1)
d = w

(t)
d +µd∇w

(t)
d

1

M

M∑
i=1

[
log d(xi,w

(t)
d ) + log

(
1− d(g(zi,w

(t)
g ),w

(t)
d )
)]

(5)
end

◦ Sample batch of noise samples {z1, ...,zM} from noise prior pg(z)

◦ Update generator weights to minimalize L:

w(t+1)
g = w(t)

g − µg∇w
(t)
g

1

M

M∑
i=1

log
(

1− d(g(zi,w
(t)
g ),w

(t)
d )
)

(6)

end
Algorithm 1: SGD training of a vanilla GAN. The number of discriminator cycles
over generator cycles, k, is a hyperparameter, commonly k = 10. Other hyperpa-
rameters are learning rates µ, batch size M , and number of iterations Nit.
From (4) it can be shown that the optimal discriminator output, for a fixed generator

is
d(x,w∗d) =

pdata(x)

pdata(x) + pg(x)
, (7)

where pg(x) is the generator’s output distribution. In the case where this is true, the
generator’s objective can be rewritten as:
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L(wg) = L(wg,w
∗
d)

= log d(x,w∗d) + log(1− d(g(z,wg),w∗d))

= log
pdata(x)

pdata(x) + pg(x)
+ log

pg(x)

pdata(x) + pg(x)

= − log(4) +DKL

(
pdata

∥∥∥∥ pdata + pg
2

)
+DKL

(
pg

∥∥∥∥ pdata + pg
2

)
= − log(4) + JSD(pdata ‖ pg),

(8)

where DKL is the Kullback-Leibner divergence:

DKL(P ‖ Q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (9)

and JSD is the Jensen-Shannon divergence:

JSD(P ‖ Q) =
1

2
DKL

(
P

∥∥∥∥ P +Q

2

)
+

1

2
DKL

(
Q

∥∥∥∥ P +Q

2

)
. (10)

Therefore, we can summarize GAN training as:

1. The discriminator is trained to approximate the Jensen-Shannon divergence of real
and generated data.

2. The generator is trained to minimize the JSD by providing better data estimations.

3.4 Wasserstein GAN

The issue with using Jensen-Shannon divergence as our metric is that for distant prob-
ability distributions, the gradient os JSD vanishes. Consider the task when we wish to
approximate the mean of a gaussian distribution by minimalizing JSD. In Figure 4, we
take two gaussian distribution, both with standard deviation 1, and the difference of their
means is ∆µ. We calculate JSD and its derivative with respect to ∆µ:
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Figure 4: The gradient of Jensen-Shannon divergence with respect to ∆µ quickly reaches
zero, rendering training obsolete.

Since we train our generator with gradient descent, the disappearance of the gradient
is a fatal problem. The only case when the gradient is not 0 is when the probability
densities has overlapping supports, where both are non-zero. Unfortunately, in Deep
Learning, such initialization is very rare.

Arjovsky et al.[10] proposed a new probability metric to replace JSD, called Wasser-
stein or Earth Mover distance. EM (or W) distance is defined as

W (P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ [‖x− y‖] , (11)

where Π(P,Q) is the set of all possible joint distributions γ(x, y) whose marginals are P
and Q. Intuitively, γ(x, y) indicates how much "mass" should be transported from x to
y in order to transform P to Q. The EM distance is the "cost" of the optimal transport
plan.[10] While this is numerically intractable, with the Kantorovich-Rubinstein duality
we can rewrite (11) as

W (P,W ) = sup
‖d‖L≤1

Ex∼P [d(x)]− Ex∼Q [d(x)] , (12)
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where the supremum is taken over all the 1-Lipsitz functions d : X → R. Figure 5.
illustrates that this distance metric solves the vanishing gradient problem on the previous
example.
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Figure 5: Unlike JSD, Wasserstein Distance (WD) has clear non-zero gradients every-
where, except at perfect convergence.

For our application, we define P and Q as the probability distributions of real and
generated samples, and d as the discriminator neural network. This way, the discriminator
is trained to estimate the Wasserstein Distance of the real and generated samples, while
the generator is trained to minimalize this distance. We will later refer to the Wasserstein
Distance as the Wasserstein Loss, since this is the training objective for both the generator
and the discrimiantor.

However, now we need to find a way to enforce the 1-Lipsitz criterium on the discrim-
inator. By definition, for a 1-Lipsitz function

‖f(x)− f(y)‖ ≤ ‖x− y‖ (13)

holds for all x and y. For a neural network and all of it’s possible imputs, this is an
intractable condition. Gulrajani et. al.[11] found a way to give an approximate solution.
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The idea is that the loss function of the discriminator is extended with a term called
Gradient Penalty. In short, the discriminator is evaluated at random linear interpolations
of real and generated samples, and at this point, the gradient of the discriminator with
respect to its input is enforced to move towards 1. Mathematically:

GP = λEx̂∼Px̃

[
(‖∇x̃d(x̃)‖2 − 1)2] (14)

Finally, our training algorithm for Wasserstein-GANs (WGANs) are as follows:
◦ Select hyperparameters k, µg, µd M , λ
◦ Initialize wg and wd weights
for Nit steps do

for k steps do
◦ Sample batch of noise samples {z1, ...,zM} from noise prior pg(z)

◦ Sample batch of real data samples {x1, ...,xM} from pdata(x)
◦ Sample random numbers {ε1, ..., εM} from U [0, 1]

x̂i = g(zi,wg)

x̃i = εixi + (1− εi)x̂i

w
(t+1)
d = w

(t)
d −∇wd

[
1

M

M∑
i=1

d(x̂i,wd)−d(xi,wd)+λ (‖∇x̃d(x̃,wd)‖2 − 1)2

]
(15)

end

◦ Sample batch of noise samples {z1, ...,zM} from noise prior pg(z)

◦ Update generator weights to minimalize L:

w(t+1)
g = w(t)

g −∇wg

1

M

M∑
i=1

−d(g(zi,wg),wd) (16)

end
Algorithm 2: SGD training of a Wasserstein GAN. λ hyperparameter is commonly
chosen 10.
In the following sections, we cover some important practical, yet general aspects of

GAN implementations.
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3.5 Deep Convolutional GANs

When Goodfellow et al. proposed GANs in 2014[4], they used multi-layer perceptrons,
meaning their neural networks consisted of Fully Connected layers. As well known in the
field, for image-like data convolutional layers are more suited.

Alec Radford et al. [12] first reported succesful training of GANs with a pure convo-
lutional architecture. Their experiments concluded in several practical guidelines:

1. Instead of pooling layers, use strided convolutions

2. Use Batch Normalization for both the discriminator and generator

3. Remove fully connected layers

4. Use ReLu activations for the generator, Tanh for the last layer

5. Use LeakyReLu activation for the discriminator

Figure 6. show the generator architecture used in [12]. Worth noting that since
the generator is broadening a 1-dimensional random vector into a 2-dimensional image.
To achieve this they used a new type of convolutional layer, called Fractionally Strided
Convolution or Transposed Convolution, where the output of the layer is wider instead of
being slimmer.

Figure 6: The architecture of a DCGAN’s generator[12].
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(a) 2D convolution using a kernel size of 3,
stride of 1 and padding

(b) Transposed 2D convolution with no padding,
stride of 2 and kernel of 3

Figure 7: Difference between regular convolution operation (left) and transposed convo-
lution operation (right). The latter is needed in the DCGAN’s generator. Blue (bottom)
data the inputs of the layer, and green (top) are the outputs. Images from [13].

As we will see in our experiment setups, some of these practical guidances are kept,
while some are thrown away: we didn’t use Batch Normalization layers, because they
make elements of the same batch statistically dependent, a direct route to mode collapse.
Also, we used LeakyReLu in both the discriminator and the generator, to reduce the
number of dead neurons. The other gudelines are kept.

3.6 Conditional GANs

So far the only input to the generator was a random vector denoted z, and the input
of the discriminator was either a real or artificial x data vector. The input x had no
label that the GAN was aware of, thus they were unconditional regarding the class of the
image.

Remember tough, that we wish to improve the performance of classification training,
thus the generated data must have a corresponding class label, and also be a representative
member of its class.

This way, we need to condition the generator to the class which we wish to synthetize.
Also, since the discriminator is supervising the training of the generator, the discriminator
has to ’know’ what class it is dealing with, alas it has to be conditioned the same way.
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This was, the training algorithm of the GAN is further modified as follow, reaching it’s
final form:
◦ Select hyperparameters k, µg, µd M , λ
◦ Initialize wg and wd weights
for Nit steps do

for k steps do
◦ Sample batch of noise samples {z1, ...,zM} from noise prior pg(z)

◦ Sample batch of real data samples with corresponding labels
{(x1, y1), ..., (xM , yM)} from pdata(x, y)

◦ Sample random numbers {ε1, ..., εM} from U [0, 1]

x̂i = g(zi, yiwg)

x̃i = εixi + (1− εi)x̂i

w
(t+1)
d = w

(t)
d −∇wd

[
1

M

M∑
i=1

d(x̂i, yi,wd)− d(xi, yi,wd)

+ λ (‖∇x̃d(x̃, yi,wd)‖2 − 1)2

] (17)

end

◦ Sample batch of noise samples {z1, ...,zM} from noise prior pg(z)

◦ Sample batch of label samples {y1, ..., yM} from marginal label distribution
pdata(y)

◦ Update generator weights to minimalize L:

w(t+1)
g = w(t)

g −∇wg

1

M

M∑
i=1

−d(g(zi, yi,wg), yi,wd) (18)

end
Algorithm 3: SGD training of a Conditional Wasserstein GAN.
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3.7 Issues with GANS and attempts at metrics

The main issue with GAN training is that the optimizing criteria, e.g. the Wasserstein
Distance, is approximated by the discriminator itself. This way, if the discriminator’s
training is poor, we can not realiably tell if the training is converging. In the domain of
natural images, when we can look at the generator’s output and tell if it ’looks real’, this
is less of a problem, albeit not enough for comparing models.

In our settings, the data are functional connectivity matrices, which are hard to
evaulate with ’our eyes’. Also the reliability of the generated data’s class-correctness
is crucial. Thus, we need a realiable metric that directly informs us about the quality of
the generated outputs.

Since most community applications work with natural images, Heusel et al.[14] came
up with an empirical solution to compare different GAN models. Their observation is
that the outputs of the final average pool layer of an ImageNet-trained Inception model
approximately follow a multivariative gaussian distribution for real natural images. For
generated data, the Inception’s activations also follow a gaussian distribution, and the
distance between the two gaussians correlate well with the goodness of the artificial data.
The authors called this metric the Fréchet Inception Distance (FID), which is the Wasser-
stein Distance of the 2 aforementioned gaussian distributions.

Let us denote the mean and covariance of the activations µreal and Σreal, and the mean
and covariance for generated samples µgen and Σgen. This way, the FID for the generator’s
output is calculated as:

FID = ‖µreal − µgen‖2
2 + Tr

{
Σreal + Σgen − 2 (ΣrealΣgen)

1
2

}
(19)

In Figure 8, they ran several experiments where they added different disturbances to
real images. Calculating the FID between undisturbed and increasingly disturbed images,
they found good correlation between data goodness and FID.
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Figure 8: FID responds well to the increase of different disturbances. Top row: gaussian
noise, gaussian blur, implanted black rectangles. Bottom row: random swirl, salt &
pepper noise, and contamination with images from different domain.[14]

This formula lacks two important properties: it is not class specific, so the class-
correctness can not be measured, and it is calculated via a network trained on natural
images, while our data are connectivity matrices. During the following section, we discuss
our solutions to these issues.
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4 Experiments

Our goal was to generate connectivity matrices of convincing quality. In order to achieve
this, we first aimed to design an appropriate metric that reflects the goodness of the
generated data.

Also, our initial task was to generate matrices with brain age as associated labels,
which is regression. We found, however, that this task was not reasonable within the given
time, since this way generating label-correct matrices is a highly complicated problem to
optimize. This way, instead of predicting brain age, we worked with gender prediction
from the same matrices, which, as being a simple binary classification task, was easily
carried out.

4.1 The UK Biobank dataset

The UK Biobank Dataset [15] is a wide-spread initative taken place in the United Kingdom
to collect biomedical, neurological, genetic data of around a hundred thousand individu-
als. Our connectivity matrix dataset originates from this databank, consisting of 19,818
matrices.

One key method used in preprocessing is Independent Component Analysis, or ICA.
It is a computational method for separating a multivariative close-to-gaussian signal to
additive, statistically independent, non-gaussian subsignals. If we denote the signal as
the observed x = (x1, ..., xm)T random vector, components as s = (s1, ..., sn)T , the task
is to find linear transformation W so that s = Wx, where s is a maximally independent
vector, where independence is measured by F (s1, ..., sn). In for example linear noiseless
ICA, x = As, meaning we have to iteratively find the mixing matrix A, and the source
vector s. This can be done via loss functions that enforces the non-gaussianity of the
calculated s vectors, and that minimize the mutual information between elements of s.
When converged, regular or pseudo inverse can be used to transform A to W . As we will
see, this method will be used to find the signal of each independent brain network.

The raw, original fMRI time series is preprocessed in a complex, rigorous way by the
UK Biobank team. The following description originates from the documentation [16]:

1. First, the raw timeseries is motion-corrected using MCFLIRT [17] algorithm

2. Grand-mean intensity normalisation of the entire 4D dataset by a single multiplica-
tive factor
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3. Highpass temporal filtering (Gaussian-weighted least-squares straight line fitting,
with σ = 50s

4. EPI unwarping with B0 field maps [18]

5. GDC unwarping [19]

6. Structured artefacts are removed by ICA+FIX processing [20]: Independent Com-
ponent Analysis followed by FMRIB’s ICA-based X-noiseifier [21], where FIX was
hand-trained on 40 Biobank rfMRI datasets.

Now, the rfMRI data is preprocessed. Next steps are about connectivity matrix extraction.

1. Calculate group-average resting-state networks using 4100 datasets:

(a) Temporarily demean and each timeseries and normalize it’s variance according
to [20]

(b) Group-PCA output was generated by MIGP [22]

(c) Group-ICA tool [20] applying spatial ICA with dimensionality 100, meaning
100 distinct ICA components are generated. These are the parcellations of the
gray matter, however, they are not binary masks, can overlap, and each can
be composed of separate areas, unlike when brain atlases are used.

(d) Since ICA identifies signal sources, different noises are present in the output.
This way, they remove artefactual components, leaving 55 components. The
resulting group-ICA components are visualized in Figure 9.

2. Map each group-ICA spatial map component onto each subject’s rfMRI timeseries
data to obtain one timeseries for each component. In this setting, each ICA com-
ponent is viewed as a ,node’.

3. For each subject, calculate full normalized temporal correlation between every pair
of node timeseries, using the FSLNets toolbox[23]

4. Values were Gaussianised from Pearson correlation scores (r-values) into z-statistics

5. Finally, a Tanh function is applied by us to squeeze values to range (-1,1).

During our experiments, the data was split: the training set contained 14864 matrices,
the validation and test set consisted of 2477 matrices each. The training set was 53%
female and 47% male, which is relatively balanced, thus accuracy remained a good metric.
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Figure 9: Summary of connectivity for the group-averaged dataset. Note that all 55 ROIs
are present. The lines represent each connectivity matrix element. Red means strong positive
correlation, blue strong anti-correlation, and white represents no correlation. Image from [24].
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4.2 Classification experiments

4.2.1 Architecture

In order to obtain a baseline for our GAN training, we trained several classification net-
works. More specifically, we run a random architecture search over a discretized range
of each hyperparameter. Let’s start with the core, constant aspects of the classificator
networks’ architectures. Similarly to Meszlényi et al [2], we used convolutional networks,
and the architecture can be seen in Figure 10.

For feature extraction, two convolutional layers were used. Let NROI denote the
number of ROIs, meaning the input matrix has shape NROI × NROI . In natural image
processing, square shaped kernels are usually used, e.g. 3x3 or 7x7. The reason behind
this is that in such images, nearby pixels have strong correlation between them. In
connectivity matrices, however, this is not the case. In the first layer’s input, the matrices
themselves, each row or column of the matrices represent data about the statistics of one
node. This way meaningful feature extraction can only happen if the kernel covers exactly
one row or column. In the second layer’s input, the matrices are reduced into vectors with
length NROI . This way, the second layer’s kernel must cover the remaining area perfectly,
having one real number for each matrix.

Of course, convolutional layers can have channels as well. Let us denote the number
output channels of the two convolutional layers c1 and c2. This way, the output of the
first layer is shaped NROI × c1, while the second layer’s output is shaped c2. The kernels
are shaped 1× c1 ×NROI × 1 and c1 × c2 × 1×NROI , respectively, following (cin, cout, w,
h) order.

After feature extraction, the last, fully connected layer performs classification, having
a single real number for the whole matrix. It’s input is shaped c2, while it’s output is one
scalar. Finally, a sigmoid layer is applied to map real numbers to values of a probabibility
distribution. Thinking of the classificator as an estimator for probability distribution over
the dataset, we can define the sigmoid as:

P(Yi = 1|Xi;w) = σ(ŷi) =
1

1 + e−f(xi)
, (20)

where f(xi) is the last layer’s output for sample i. In our experiments we realized that
increasing the number of fully connected layers yielded no significant advantage. This
way, the only free parameters for the architecture are c1 and c2.
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4.2.2 Hyperparameter search

In addition to finding good values for c1 and c2, during training, additional hyperparam-
eters must be defined. We limited our training to the use of the simplest yet effective
gradient descent variant: Stochastic Gradient Descent with Nesterov momentum. This
optimizer has 3 hyperparameters: learning rate , momentum, and weight decay, leading
us to have five hyperparameters in total. We used random grid search for all of these,
meaning we chose a meaningful discretized interval for them:

1. c1: 2 to 256 with multiplicative step 2 (8 values)

2. c2: 2 to 256 with multiplicative step 2 (8 values)

3. learning rate: 3 · 10−5 to 3 · 10−1 with multiplicative step 3 (9 values)

4. momentum: 1−t where t ranges from 0.01 to 0.15 with additive step 0.01 (15 values)

5. weight decay: 10−6 to 10−2 with multiplicative step 10 (5 values)

In total, we have 43200 possible configurations laid in 5 dimensions. The hyperparameter
search can be best described with the following simple algorithm:

◦ Define hyperparameter configuration space H

◦ Initialize pseudorandom number generators
for Nnets steps do
◦ Sample hyperparameters h from H

◦ epoch=0; stop_iter = False; best_val_loss=inf
while epoch < Nepoch and not stop_iter do
◦ Train network for 1 epoch
◦ val_loss = validate(network)
if val_loss < best_val_loss then

save()
best_val_loss = val_loss

end

end

stop_iter = should_stop()
end

Algorithm 4: Classification hyperparameter search.
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In simple terms, we save the networks when their validation loss is the lowest. The
function should_stop watches the validation loss over the epochs, and is designed to
detect overfitting and convergence. This is needed to reduce the total time cost of the
hyperparameter search.

We trained around 1200 networks, which took around 20 hours of GPU time. The
best results can be seen in Table 1:

Validation Loss Validation Acc. # of params c1 c2 Lr. Mom. Wd.

0.319 0.8619 3619329 256 256 0.00729 0.96 0.001

0.322 0.8627 915585 256 64 0.00243 0.87 0.0001

0.324 0.8623 908545 128 128 0.02187 0.97 1E-05

0.324 0.8623 464961 256 32 0.00729 0.88 0.001

0.324 0.8655 126993 256 8 0.00729 0.97 0.001

0.381 0.8304 1333 8 2 0.06561 0.97 0.0001

Table 1: Some of the best results of the hyperparameter search.

Two networks will be in our interest. In the first row, we have the best loss and
accuracy, this way, we will use this model when we evaluate predictive power related
metrics. We will call this network Learner.

Note that the last line shows a network that did not achieve outstanding accuracy,
but has incredibly low amount of parameters. This will be our Reference Network, which
we will discuss in the next section.
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4.3 Wasserstein Activation Distance

As mentioned in Section 3.7, at time of writing, the most accurate metric for evaluating
generated images in a direct way is the Fréchet Inception Distance. However, this is not
applicable in our settings, since the Inception network is used for natural images, and FID
is not class-specific. To resolve these issues, we follow the most straightforward path:

1. Have a network trained on connectivity matrices (Reference Network), and use it’s
second convolutional layer’s output as activations

2. Train Reference Network to predict the same classes as those we wish to generate
correctly

3. Calculate (19) for all classes, and average them

This way, our new metric, named Wasserstein Activation Distance (WAD), is com-
puted as follows:

WAD =
1

C

C∑
c=1

{∥∥∥µ(c)
real − µ

(c)
gen

∥∥∥2

2
+ Tr

{
Σ

(c)
real + Σ(c)

gen − 2
(

Σ
(c)
realΣ

(c)
gen

) 1
2

}}
(21)

4.3.1 Reference Network

In the last row of Table 1, we can see the hyperparameters of the network that we chose
to be our reference network, which will provide us the activations necessary to compute
WAD. The reason behind this choice is that this was the network that achieved relatively
good loss and accuracy, while has incredibly low amount of parameters. This way, the
activations of the second convolutional layer have low dimensionality, meaning mean and
covariance calculations are more stable (curse of dimensionality), and cheaper. Also, since
the dimension of the activations are exactly 2, we can easily visualize them. We can see
the architecture of the reference network in Figure 11.
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Figure 11: The architecture of the Reference Network.

Note that as we can see in Figure 11, the convolution layers yield two real numbers for
each matrix, meaning that we can place each connectivity matrix in a two-dimensional
space. This way, the last, fully connected layer represents the following function:

y = w1x1 + w2x2, (22)

where w1 and w2 are the two weights of the last FC layer, and x1, x2 are the output
coordinates of the last convolutional layer. Since we have a sigmoid function as the last
activation, and we threshold predictions at 0.5, y > 0 elements will be assigned class
1, and y < 0 elements will have class 0. This way, we can think of the last layer as a
separator line (w1x1 + w2x2 = 0) between class 1 and 2 activations.

In Figure 12, we visualize the Reference Network’s activations for 7000 real examples.
Notice that the distribution of the activations are approximately gaussians for each class,
and they overlap. Overlapping occurs because the Reference Network’s final accuracy was
83%.
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Figure 12: Reference Network’s activations for 7000 real examples. Yellow dots represent
female, while red dots represent male participants. Also, the blue line is the separator
line.

4.3.2 Learning Loss

As mentioned before, in the first row of Table 1, we have the classificator network with the
best validation performance. We will use this network, to evaluate an absolute metric to
evaluate the performance of the GAN andWAD itself: how much class-specific information
is retained in the generated data. To do this, we use the generated data as the training
dataset, use the regular validation dataset for early stopping, then evaluate said network
on the test set. We will call the test loss arising from this setting the Learning Loss. The
Learning Loss of the real data was 0.32.

While being an absolute measure, Learning Loss takes around 10 minutes on a high-
end GPU to evaluate, in contrast to WAD taking milliseconds. This means Learning
Loss not usable in GAN hyperparameter search or early stopping, rather as a final testing
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method.

4.3.3 Performance of WAD

In order to verify that WAD is a useful metric, we conducted a simple experiment. In
short, instead of comparing real matrices to generated matrices, we compared the same
real matrices with matrices that have noise added to them. This noise was symmetrical,
uniform in range (−1, 1). During the experiment, we added the noise to the matrices
with different weights. Denoting the noise ratio with α, the noise with z, and the original
matrix x, we get the noisy matrix as:

x̃ = (1− α)x + αz. (23)

Of course, the original and the noisy matrices are from mutually exclusive parts of the
train dataset, both containing 7000 matrices. The size of the batches (7000) is important
to be kept constant, as the calculated mean and covariance of the activations depend on
it.

In Figure 13, we can see the result of the WAD performance test. In Figure 13a,
we ran 50 measurements for each noise-ratio, and the errorbars represent 95% confidence
interval. Note that WAD is monotone with low variance, thus captures well the goodness
of the data.

In Figure 13b, we present the Learning Loss of the same noisy data. As we can see,
both WAD and this training-based loss are monotone, while the latter appears to be more
noisy.

Also, note that a noise with weight 0.1 is not visible as loss increase in Figure 13b,
meaning that it is not necessary meaningful to train a GAN to have WAD below ≈ 3·10−2.
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Figure 13: Comparison of the two GAN-related metrics: WAD and using artificial data
as training data.

For visualization, in Figure 14a. and 14b, we can see the corresponding activations to
noisy matrices, with noise ratio 0.1 and 0.7, respectively. Note that the noise with ratio 0.1

makes almost no visible difference, while the 0.7 ratio significantly changes the activations:
the classes are displaced, their variance decreased, and their overlap increased.

(a) Noise ratio is 0.1. (b) Noise ratio is 0.7.

Figure 14: Reference Network’s activations for 7000 original (yellow and red dots) and
7000 noisy matrices. Comparison of effects of low amount of noise (left) and high amount
of noise (right).

We should note that WAD has it’s own limits. We can think of the Reference Network’s
first 2 convolutional layers as a projection from a 55×(55−1)

2
= 1485 dimensional space to a
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two-dimensional space. In this case, it would be easy to find disturbances in the data that
would not affect the distribution of the activations, yet would render the data useless. It
is one of our future goals to solve this issue.

In the following section, we describe our GAN setups, and use the described WAD to
aid GAN training.
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4.4 Training of GANs

To fully describe our experiments with GAN training, we will first go through the archi-
tecture of our GAN, briefly discussing the actual hyperparameters. Next, we present the
algorithm for WAD-aided training, with some visualizations of the training process.

4.4.1 GAN Architecture

In Figure 15. and 16. we can view the general architecture for the label-conditioned gen-
erator and discriminator. Both Networks were trained with Adam optimizers. The final
hyperparameters are hand-engineered, since the training of a single GAN takes around 3
hours on a high-end GPU.

In the generator, first we can find 2 parallel fully connected layers, which operate on
the input noise and on the label, respectively. Their output is concatenated along the
feature dimension. From now, we can find 2 Transposed Convolution layers, that expand
and transform the concatenated features to a non-symmetrical matrix that has shape
NROI ×NROI . Now, this matrix is symmetrized in a simple way (x′ = 1

2
(x+xT )), then a

Tanh function is applied to squeeze the values to range (-1, 1). The exact hyperparameters
can be seen in Table 2. The dimension of the input noise was 32.

f1 f2 c1 Slope Lr. Wd. β1 β2

64 64 32 0.01 10−2 10−4 0.5 0.99

Table 2: Hyperparameters for the generator. f1, f2, c1 represent layer widths, Slope is
the LeakyReLU’s slope. The other parameters are the optimizer’s.
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In the discriminator, we can find a similar pattern: the output of the first convolutional
layer that operates on the matrix is concatenated with the output of the label-processing
Transposed Convolutional layer’s output. Then, an another convolutional layer is applied,
followed by a fully connected layer. In Wasserstein GAN, there is no nonlinearity on the
end of the discriminator. The hyperparameters can be seen in Table 3.

c1 l1 c2 Slope Lr. Wd. β1 β2

96 96 48 0.01 0.1 10−4 0.5 0.99

Table 3: Hyperparameters for the discriminator. c1, l1, c2 represent layer widths, Slope is
the LeakyReLU’s slope. The other parameters are the optimizer’s.
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4.5 Examining GAN Training

In this section we examine the training of our GAN. We have two simultaneous goals here:
to prove that WAD is useful in GAN training, and to examine how well we managed to
train our GAN. To do this, at each step, we evaluate WAD and the Wasserstein Loss. To
compare these metrics, we calculate the Learning Loss at meaningful GAN training steps.
Finally, the Learning Loss at WAD’s minimum will measure the quality of the generated
examples.

For training our GAN, we use Algorithm 3. and after each generator update, we
evaluate WAD. Fortunately, all of the 14864 training examples fit in our GPU, meaning
each step equals one epoch. The total training consisted of 360 epochs, which took 3
hours.

The best WAD value was reached at step 174, so we plotted the losses up to step
180: in Figure 17, we can see the Wasserstein Activation Distance during training, while
in Figure 18, the discriminator’s estimate for the Wasserstein Distance of the real and
generated data van be viewed.
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Figure 17: The Wasserstein Activation Distance for the GAN during training. The red
dots mark steps that are further examined.
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Figure 18: The Wasserstein Loss for the GAN during training. Do not confuse with WAD,
as this is the training objective that is maximised by the discriminator and minimized by
the generator. The steps marked with red dots, along with the minimum at step 76, are
further examined.

To further analyze the GAN training, in Figures 19 - 21. we visualize the Reference
Net’s activations and the generated matrices at steps 1, 100, and 174. In Figure 19, just
after the first epoch, we can see that the activations have lower variance, and misplaced,
and we can visually conclude that the generated matrices are not realistic. In Figure
20, however, we can see that the activations have appropriate variance, but still not
class-correct. Also, it is now hard to visually evaluate the generated matrices. Last, after
iteration 174, the activations almost perfectly match the real examples’ activations, giving
us a minimum of WAD.
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(a) Reference Net’s activations for generated examples at step 0.

Sex: Female Sex: Male

(b) Generated matrices at step 0.

Sex: Female Sex: Male

(c) Examples of real matrices for comparison.

Figure 19: Activations and generator outputs at step 0.
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(a) Reference Net’s activations for generated examples at step 100.

Sex: Female Sex: Male

(b) Generated matrices at step 100.

Sex: Female Sex: Male

(c) Examples of real matrices for comparison.

Figure 20: Activations and generator outputs at step 100.
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(a) Reference Net’s activations for generated examples at step 174.

Sex: Female Sex: Male

(b) Generated matrices at step 174.

Sex: Female Sex: Male

(c) Examples of real matrices for comparison.

Figure 21: Activations and generator outputs at step 174.
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4.5.1 Final Results

As our first final goal, we argue why using WAD was necessery for our GAN training.
First, WAD is independent of GAN architecture, thus viable for hyperparameter and

architecture search, and for comparing models.
Second, it is better for early stopping the GAN with WAD than with only the Wasser-

stein Loss. To see this, we evaluated the Learning Loss at steps marked by red in Figures
17. and 18. Also, along these points, we evaluated the Learning Loss at the minimums
of WAD and the Wasserstein Loss, since early stop would happen in these points.

The results are summarized in Table 4. We can clearly see that the early stopping
with WAD yielded better Learning Loss than with Wasserstein Loss. Of course, we can
see in Figures 17. and 18. that both metrics are quite noisy, having many outliers,
including the minima. We should note that during training, smoothing or removing
outliers for early stopping purposes is cumbersome and ambiguous. Still, we compared
the two metrics when the plots are smoothed with a moving average filter of length 10
steps: the smoothed WAD curve had its minimum at step 300, with value 0.025, and a
test loss of 0.478, while the minimum of the smoothed Wasserstein Loss can be found at
step 254 with value 8906, and a test loss of 0.498, meaning that with less significance, but
WAD still outperformed the Wasserstein Loss.

The best Learning Loss was at step 150, meaning that WAD is not perfectly accurate.
There are presumably many reasons behind this. First, same as with FID, so far WAD
is not theoretically backed up, meaning we do not exactly know it’s limits. Also, it
is Neural Network based, meaning the training of the Reference Network might affect
the performance of WAD. Furthermore, even if we found a way to ’perfectly’ train the
Reference Network, it projects the high-dimensional matrices to a two-dimensional plane.
This mean that it should be possible to perturb the data in ways that the activations do
not change, or worse, in ways that WAD decreases while information is clearly lost. This
later argument can explain the outliers in the WAD plot in Figure 17.
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Step Learning Loss Test Acc. WAD Wasserstein Loss Note

1 0.88 0.497 4 1.27 · 105 First epoch

50 0.8 0.52 2 1.85 · 104 -

76 0.686 0.57 2 −843 Wasserstein L. minimum

100 0.496 0.769 0.35 1.37 · 104 -

150 0.464 0.783 0.098 1.06 · 104 Best Learning Loss

174 0.5 0.767 4.5 · 10−3 1.85 · 104 WAD minimum

Real 0.322 0.855 - - -

Table 4: Learning Losses (test losses) of generated data extracted at different GAN train-
ing steps. Last row corresponds to the real training dataset.

We can conclude that, using WAD as a guide to train GANs, we can achieve better
results than with the Wasserstein Loss. Further improvements must be made in order to
WAD become fully reliable. One of the promising directions for our further experiments
is creating an ensemble of reference networks, with properties that make sure that they
realize different projections, hopefully better reflecting the information retained in gener-
ated data. Also, we tested WAD only with uniform noise in Section 4.3.3. Finding new,
meaningful ways to test the metric should yield better performance.

As for the success of training of our GAN, the final generated samples do not contain
all the information as in the training data, since it has higher Learning loss than the
real matrices. However, we see that some information is retained, since the accuracy
corresponding to it’s Learning Loss is well above random level (76.7 % vs 50-60%).
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5 Conclusion

The goal of this thesis was to generate convincing functional connectivity matrices using
Generative Adversarial Networks. I gained deep understanding of these matrices and how
they are extracted from the raw fMRI data. After choosing the appropriate dataset, the
UK Biobank’s resting state fMRI connectivity matrix repository of 19,818 examples, I
chose to refine the goal to generating artificial connectivity matrices that retain informa-
tion relating to the subject’s gender.

In order to obtain the appropriate GAN algorithm, after cumbersome experimentation,
I combined several approaches used by the machine learning community. The resulting
network was trained using Wasserstein Loss with gradient penalty. Wasserstein Loss is
favourable over it’s predecessor, the Jensen-Shannon Divergence, since the vanishing gra-
dient problem is elimianted. For a Wasserstein GAN, the discriminator must be Lipsitz-1
continous, this was approximately enforced with Gradient Penalty. The architecture of
the Wasserstein GAN was deep, convolutional, and conditioned to class labels.

I realized that training GANs while monitoring solely the training objective is not
sufficient, since their values depend on the performance of the discriminator, render-
ing hyperparameter search and early stopping nearly impossible. To resolve this issue,
I ported the powerful Fréchet Inception Distance (FID) metric to the domain of func-
tional connectivity matrices in a class-sensitive setting. FID operates by measuring the
Wasserstein Distance between the gaussian-distributed activations of an Imagenet-trained
Inception Network’s last Average Pool for real and generated samples.

To achieve this, using hyperparameter search I obtained the optimal network for ac-
tivation extraction, called the Reference Network. I solved the issue of class-specifity by
calculating the Wasserstein Distance of the activations of real and generated examples for
each class, and took the average of them. This way, a new metric arised, which i called
the Wasserstein Activation Distance (WAD). Like FID, WAD is a metric that does not
depend on the architecture of the GAN, meaning it is suitable for manual or automatic
hyperparameter search. This way, I found the optimal hyperparameters for the GAN,
then evaluated the performance of WAD and the GAN as well. I also ran a simple test on
WAD to observe the relationship between uniform noise added to the training data and
WAD, finding WAD to be a monotone function of the intensity of noise added, and also
having low variance.
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I compared training with WAD to training with the Wasserstein Loss, since my hy-
pothesis was that WAD is more suitable for validating GAN training than simply using the
training objective itself. To validate the generated matrices’ quality, I used a training-
based metric, called the Learning Loss, which was computed by using the generated
examples as training examples for a classificator, early stopping it with the validation
dataset, then calculating the test loss. The Learning Loss is an absolute metric, since it
reflects the amount of class-specific information retained in the generated data, meaning
it is suitable for measuring the performance of the GAN and WAD.

During thorough experimentation, I realized that WAD is indeed more useful for GAN
hyperparameter search and training than the simple Wasserstein Loss. However, I came
to the conclusion that WAD is still incomplete, since the minimum of WAD and the
minimum of the Learning Loss was at different steps. I found that the reason behind this
is that WAD in it’s current form uses only one classificator network with low amount of
parameters, meaning it is easy to perturbe the data in ways that destroy class-specific
information while the activations of the Reference Network change in a way that implies
the opposite.

Despite this flaw, I managed to train the GAN with WAD to the point when the
generated matrices can be used to train a classificator up to the accuracy of 76.7%, which
means that WAD is indeed useful for GAN training.

In my future endeavours, I will address the issues regarding to WAD. First, I will
examine whether it is possible to use an ensemble of reference networks with properties
that minimize the possibility of data perturbations which are WAD currently insensitive
to. If appears possible, I will attempt to give theoretical explanations for my experimental
findings, and conduct a wider range of tests to find what perturbations are captured well
by WAD.

44



List of Figures

1 The BOLD signal and neural activity [6]. . . . . . . . . . . . . . . . . . . . 2
2 Taking a seed region denoted with blue circles, we can generate correlation

maps of brain regions that share similar neuronal activity to that of the
seed. Six of the major networks can be seen here: visual, sensorimotor,
auditory, default mode, dorsal attention, and executive control. The scale
numbered 0–7 indicates relative correlation strength. [7] . . . . . . . . . . 3

3 Connectivity matrix examples from our dataset, where a female (left), and
a male (right) patient’s connectivity can be seen. Both matrices are con-
structed from 55 ROIs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 The gradient of Jensen-Shannon divergence with respect to ∆µ quickly
reaches zero, rendering training obsolete. . . . . . . . . . . . . . . . . . . . 10

5 Unlike JSD, Wasserstein Distance (WD) has clear non-zero gradients ev-
erywhere, except at perfect convergence. . . . . . . . . . . . . . . . . . . . 11

6 The architecture of a DCGAN’s generator[12]. . . . . . . . . . . . . . . . . 13
7 Difference between regular convolution operation (left) and transposed con-

volution operation (right). The latter is needed in the DCGAN’s generator.
Blue (bottom) data the inputs of the layer, and green (top) are the outputs.
Images from [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 FID responds well to the increase of different disturbances. Top row: gaus-
sian noise, gaussian blur, implanted black rectangles. Bottom row: random
swirl, salt & pepper noise, and contamination with images from different
domain.[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

9 Summary of connectivity for the group-averaged dataset. Note that all 55
ROIs are present. The lines represent each connectivity matrix element.
Red means strong positive correlation, blue strong anti-correlation, and
white represents no correlation. Image from [24]. . . . . . . . . . . . . . . . 20

10 The general architecture of a simple classificator CNN suited for functional
connectivity matrices. The architecture is parametrized with 2 integers: c1

and c2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11 The architecture of the Reference Network. . . . . . . . . . . . . . . . . . . 26



12 Reference Network’s activations for 7000 real examples. Yellow dots repre-
sent female, while red dots represent male participants. Also, the blue line
is the separator line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

13 Comparison of the two GAN-related metrics: WAD and using artificial
data as training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

14 Reference Network’s activations for 7000 original (yellow and red dots) and
7000 noisy matrices. Comparison of effects of low amount of noise (left)
and high amount of noise (right). . . . . . . . . . . . . . . . . . . . . . . . 29

15 The architecture of the generator network. . . . . . . . . . . . . . . . . . . 33
16 The architecture of the discriminator network. . . . . . . . . . . . . . . . . 34
17 The Wasserstein Activation Distance for the GAN during training. The

red dots mark steps that are further examined. . . . . . . . . . . . . . . . . 36
18 The Wasserstein Loss for the GAN during training. Do not confuse with

WAD, as this is the training objective that is maximised by the discrim-
inator and minimized by the generator. The steps marked with red dots,
along with the minimum at step 76, are further examined. . . . . . . . . . 37

19 Activations and generator outputs at step 0. . . . . . . . . . . . . . . . . . 38
20 Activations and generator outputs at step 100. . . . . . . . . . . . . . . . . 39
21 Activations and generator outputs at step 174. . . . . . . . . . . . . . . . . 40

List of Tables

1 Some of the best results of the hyperparameter search. . . . . . . . . . . . 24
2 Hyperparameters for the generator. f1, f2, c1 represent layer widths, Slope

is the LeakyReLU’s slope. The other parameters are the optimizer’s. . . . 31
3 Hyperparameters for the discriminator. c1, l1, c2 represent layer widths,

Slope is the LeakyReLU’s slope. The other parameters are the optimizer’s. 32
4 Learning Losses (test losses) of generated data extracted at different GAN

training steps. Last row corresponds to the real training dataset. . . . . . . 42



References

[1] Anibal Sólon Heinsfeld, Alexandre Rosa Franco, R Cameron Craddock, Augusto
Buchweitz, and Felipe Meneguzzi. Identification of autism spectrum disorder using
deep learning and the abide dataset. NeuroImage: Clinical, 17:16–23, 2018.

[2] Regina J Meszlényi, Krisztian Buza, and Zoltán Vidnyánszky. Resting state fmri
functional connectivity-based classification using a convolutional neural network ar-
chitecture. Frontiers in neuroinformatics, 11:61, 2017.

[3] Hongming Li, Theodore D Satterthwaite, and Yong Fan. Brain age prediction based
on resting-state functional connectivity patterns using convolutional neural networks.
In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
pages 101–104. IEEE, 2018.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[5] Scott A Huettel, Allen W Song, Gregory McCarthy, et al. Functional magnetic
resonance imaging, volume 1. Sinauer Associates Sunderland, MA, 2004.

[6] Charles Schaper. Analytic model of fmri bold signals for separable metrics of neural
and metabolic activity. bioRxiv, page 573006, 2019.

[7] Dongyang Zhang and Marcus E Raichle. Disease and the brain’s dark energy. Nature
Reviews Neurology, 6(1):15, 2010.

[8] David C Van Essen and Donna L Dierker. Surface-based and probabilistic atlases of
primate cerebral cortex. Neuron, 56(2):209–225, 2007.

[9] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for
back-propagation. In Proceedings of the 1988 connectionist models summer school,
volume 1, pages 21–28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

[10] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.



[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in Neural Information
Processing Systems, pages 5767–5777, 2017.

[12] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[13] Paul-Louis Pröve. An introduction to different types of convolutions in deep
learning, 2019. 05. 16. url: https://towardsdatascience.com/types-of-convolutions-
in-deep-learning-717013397f4d.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems, pages 6626–
6637, 2017.

[15] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John
Danesh, Paul Downey, Paul Elliott, Jane Green, Martin Landray, et al. Uk biobank:
an open access resource for identifying the causes of a wide range of complex diseases
of middle and old age. PLoS medicine, 12(3):e1001779, 2015.

[16] UK Biobank. Uk biobank brain imaging documentation, 2019. 05. 16. url:
https://biobank.ctsu.ox.ac.uk/crystal/docs/brainmri.pdf.

[17] Mark Jenkinson, Peter Bannister, Michael Brady, and Stephen Smith. Improved opti-
mization for the robust and accurate linear registration and motion correction of brain
images. Neuroimage, 17(2):825–841, 2002.

[18] Jan Kybic, Philippe Thévenaz, Arto Nirkko, and Michael Unser. Unwarping of unidirec-
tionally distorted epi images. IEEE transactions on medical imaging, 19(2):80–93, 2000.

[19] Fidel Alfaro-Almagro, Mark Jenkinson, Neal K Bangerter, Jesper LR Andersson, Lu-
dovica Griffanti, Gwenaëlle Douaud, Stamatios N Sotiropoulos, Saad Jbabdi, Moises
Hernandez-Fernandez, Emmanuel Vallee, et al. Image processing and quality control
for the first 10,000 brain imaging datasets from uk biobank. Neuroimage, 166:400–424,
2018.



[20] Christian F Beckmann and Stephen M Smith. Probabilistic independent component anal-
ysis for functional magnetic resonance imaging. IEEE transactions on medical imaging,
23(2):137–152, 2004.

[21] Ludovica Griffanti, Gholamreza Salimi-Khorshidi, Christian F Beckmann, Edward J
Auerbach, Gwenaëlle Douaud, Claire E Sexton, Enikő Zsoldos, Klaus P Ebmeier, Nicola
Filippini, Clare E Mackay, et al. Ica-based artefact removal and accelerated fmri acquisi-
tion for improved resting state network imaging. Neuroimage, 95:232–247, 2014.

[22] Stephen M Smith, Aapo Hyvärinen, Gaël Varoquaux, Karla L Miller, and Christian F
Beckmann. Group-pca for very large fmri datasets. NeuroImage, 101:738–749, 2014.

[23] UK Biobank. Fslnets toolbox, 2019. 05. 16. url:
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fslnets.

[24] UK Biobank. Uk biobank connections between brain regions, 2019. 05. 16. url:
https://www.fmrib.ox.ac.uk/datasets/ukbiobank/netjsd100/.


