# DIPLOMAMUNKA

## I-125 sugárforrások brachyterápiás dóziseloszlásainak dozimetriai értékelése permanens prosztatatűzdeléseknél UH, CT és MRI képalkotások használatával

## Bianco-Molnár Zsanett

Témavezető: Dr. Major Tibor részlegvezető fizikus Országos Onkológiai Intézet

Konzulens: Dr. Pesznyák Csilla egyetemi docens BME, Nukleáris Technika Intézet

BME 2017 Ide jön a diplomamunka kiírás

## Önállósági nyilatkozat

Alulírott Bianco-Molnár Zsanett, a Budapesti Műszaki és Gazdaságtudományi Egyetem Fizikus mesterszak (MSc) Orvosi Fizika szakirányának hallgatója kijelentem, hogy ezt a diplomamunkát meg nem engedett segítség igénybevétele nélkül, saját magam készítettem. Minden olyan szövegrészt, adatot, diagramot, ábrát, vagy bármely más elemet, amelyet vagy szó szerint, vagy azonos értelemben, de átfogalmazva másoktól vettem át, a forrás megadásával egyértelműen megjelöltem.

Budapest, .....

.....

Bianco-Molnár Zsanett

## TARTALOMJEGYZÉK

| 1. | Bevezetés          |                                                         | 7                                                                                                                                                                                                                                                                                                                                                             |  |
|----|--------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2. | Brachyterá         | pia                                                     | 10                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 2.1. Proszt        | atadaganatok brachyterápiája                            | 11                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 2.1.1.             | LDR-BT                                                  | 12                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 2.1.2.             | HDR-BT                                                  | 13                                                                                                                                                                                                                                                                                                                                                            |  |
| 3. | Célkitűzés         | ek                                                      | 15                                                                                                                                                                                                                                                                                                                                                            |  |
| 4. | Módszerek          |                                                         | <ul> <li>10</li> <li>11</li> <li>12</li> <li>13</li> <li>15</li> <li>16</li> <li>17</li> <li>17</li> <li>19</li> <li>20</li> <li>21</li> <li>21</li> <li>23</li> <li>27</li> <li>29</li> <li>29</li> <li>29</li> <li>32</li> <li>33</li> <li>itása</li> <li>33</li> <li>36</li> <li>40</li> <li>40</li> <li>41</li> <li>44</li> <li>45</li> <li>50</li> </ul> |  |
|    | 4.1. Dozim         | etriai elemzés                                          | 17                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.1.1.             | Dóziseloszlások értékelése                              | 17                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.1.2.             | Térfogati- és dózisparaméterek                          | 19                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.1.3.             | Minőségi indexek                                        | 20                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.2. Intrao        | 21                                                      |                                                                                                                                                                                                                                                                                                                                                               |  |
|    | 4.2.1.             | LDR-BT technika és intraoperatív dozimetria             | 21                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.2.2.             | Posztimplantációs dozimetria                            | 23                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.3. LDR-          | és HDR-BT-s dozimetria                                  | 27                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.3.1.             | LDR-BT-val kezelt betegek HDR tervei                    | 27                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.3.2.             | HDR-BT technika                                         | 29                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.3.3.             | HDR-BT-val kezelt betegek LDR tervei                    | 29                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 4.4. Statisz       | ztikai elemzés                                          | 32                                                                                                                                                                                                                                                                                                                                                            |  |
| 5. | Eredmények         |                                                         |                                                                                                                                                                                                                                                                                                                                                               |  |
|    | 5.1. Az int        | raoperatív és posztimplantációs tervek összehasonlítása | 33                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 5.2. Az LD         | DR- és HDR-BT-s tervek összehasonlítása                 | 36                                                                                                                                                                                                                                                                                                                                                            |  |
| 6. | Megbeszél          | és                                                      | 40                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 6.1. Az int        | raoperatív és posztimplantációs tervek értékelése       | 40                                                                                                                                                                                                                                                                                                                                                            |  |
|    | 6.2. Az LI         | DR- és HDR-BT-s tervek értékelése                       | 41                                                                                                                                                                                                                                                                                                                                                            |  |
| 7. | Összefoglalás      |                                                         |                                                                                                                                                                                                                                                                                                                                                               |  |
| 8. | Irodalomjegyzék 4: |                                                         |                                                                                                                                                                                                                                                                                                                                                               |  |
| Kö | szönetnyilv        | ánítás                                                  | 50                                                                                                                                                                                                                                                                                                                                                            |  |

Mellékletek

# RÖVIDÍTÉSEK JEGYZÉKE

| 2D    | — | két dimenzió                                                                                                                  |
|-------|---|-------------------------------------------------------------------------------------------------------------------------------|
| 3D    | _ | három dimenzió                                                                                                                |
| AAPM  | _ | American Association of Physicists in Medicine                                                                                |
| BT    | _ | brachyterápia ("brachytherapy")                                                                                               |
| CI    | _ | lefedettségi index ("coverage index")                                                                                         |
| COIN  | _ | konformalitási index ("conformal index")                                                                                      |
| СТ    | _ | számítógépes rétegvizsgálat ("Computed Tomography")                                                                           |
| CTV   | _ | klinikai céltérfogat ("clinical target volume")                                                                               |
| DHI   | _ | dózishomogenitási index ("dose homogenity index")                                                                             |
| DNS   | _ | genetikai örökítőanyag ("dezoxiribonukleinsav")                                                                               |
| DVH   | _ | dózis-térfogat hisztogram ("dose-volume histogram")                                                                           |
| EAU   | _ | European Association of Urology                                                                                               |
| EORTC | _ | European Organisation for Research and Treatment of Cancer                                                                    |
| ESTRO | _ | European Society for Therapeutic Radiology and Oncology                                                                       |
| GEC   | _ | Groupe Européen de Curiethérapie                                                                                              |
| HDR   | _ | nagy dózisteljesítményű ("high-dose-rate")                                                                                    |
| ICRU  | _ | Sugárzási Mértékegységek és Mérések Nemzetközi Bizottsága<br>("International Commission of Radiation Units and Measurements") |
| IGABT | - | képvezérelt adaptív brachyterápia ("Image-Guided Adaptive<br>Brachytherapy")                                                  |
| IPSA  | _ | anatómiai-alapú inverz optimalizációs módszer ("Inverse Planning<br>Simulated Annealing")                                     |

| LDR – | kis dózisteljesítményű | (,,low-dose-rate") |
|-------|------------------------|--------------------|
|-------|------------------------|--------------------|

- MRI mágneses rezonancia képalkotás ("Magnetic Resonance Imaging")
- OAR védendő szerv ("Organ at Risk")
- PET pozitron emissziós tomográfia ("Positron Emission Tomography")
- PIPB permanens implantációs prosztata brachyterápia ("permanent implantation prostate brachytherapy")
- PTV tervezési céltérfogat ("planning target volume")
- RTG röntgen
- TT teleterápia ("teletherapy")
- UH ultrahang

## 1. BEVEZETÉS

A daganatos megbetegedések számának növekedésének hátterében leginkább a civilizációs ártalmak, illetve az évszázadok során megváltozott életvitel állhat. A rosszindulatú daganatos megbetegedések világszerte előkelő helyet foglalnak el a halálozási okok között. Az egyre szélesebb körű felvilágosítás miatt egyre többen jelentkeznek szűrővizsgálatokra még a betegség kezdeti stádiumában. Ebből kifolyólag, és az orvostudomány valamint a technika fejlődésének köszönhetően a betegek gyógyulási esélye javuló tendenciát mutat. A daganatos megbetegedés diagnosztizálása után, az orvos a rendelkezésére álló információk alapján hoz döntést a lehetséges kezelések alkalmazásáról. Ezek lehetnek:

- műtét,

- kemoterápia,

- sugárkezelés.

Sugárterápiás gyógyításban a daganatos betegek körülbelül 60%-a részesül.

A röntgensugárzást már a XX. század kezdetétől használják gyógyítási célokra, melynek sejtpusztító hatása közvetlenül vagy közvetetten a DNS-en keresztül érvényesül. Az ép és a daganatos sejtek sugárérzékenység szempontjából különböznek, de a kezelés során az ép szövetek is károsodhatnak, ezért a sugárterápia célja a következőképpen fogalmazható meg:

minél nagyobb, homogén dóziseloszlású sugárterhelést leadni a kezelendő térfogatra, a környező ép szövetek megóvása mellett [1].

A sugárterápiának alapvetően két módja van:

- teleterápia (TT)
- brachyterápia (BT)

A teleterápia – más szóval távoli vagy külső besugárzás - a sugárkezelések leggyakoribb formája. A sugárzás forrása mindig a testen kívül, attól adott távolságra, körülbelül 1 méterre helyezkedik el. Napjainkban a kezelésekhez leggyakrabban lineáris gyorsítókat használnak.

Brachyterápiás – jelentése közeli, vagy belső – kezelés esetén a sugárforrás a kezelendő térfogatban vagy annak közvetlen közelében helyezkedik el. Ennek a módszernek az előnye, hogy alkalmazásakor relatív nagy dózis szolgáltatható ki a céltérfogatra, miközben az ép szövetek és a védendő szervek kis dózisterhelést kapnak. Hátránya, hogy a beavatkozás invazív.

A brachyterápia története pár évvel a rádium felfedezését követően kezdődött [2,3]. Több évtizeden keresztül szinte csak a rádium volt a kezelésekhez használt izotóp, így az évek során rengeteg klinikai adat és tapasztalat gyűlt össze ezzel a sugárforrással kapcsolatban. A manuálisan végzett kezelések következtében, tapasztalati úton fokozatosan kialakultak a különböző dozimetriai fogalmak és sugárvédelmi ismeretek. Később megjelentek az ún. dozimetriai rendszerek, melyeknek akkor, fontos szerepük volt a kezelési módszerek egységesítésében, amikor még volt mód számítógépes nem besugárzástervezésre. Ezek az előírások a megfelelő dózishomogenitás elérése céljából merev szabályokat írtak elő a források elhelyezésére és a dózisspecifikáció megadására. A legismertebb rendszerek a manchesteri, a Quimby-i, a párizsi és a New York Memorial-i [4]. Jelentős fejlődés volt a távvezérelt utántöltéses ("afterloading") technika a személyzet sugárvédelme szempontjából. Hatalmas lépést jelentett a kisméretű sugárforrások kifejlesztése, és így, a HDR készülékek megjelenése, melyekkel biztosítható volt a nagy dózisteljesítmény kiszolgálása. Az új technika a kezelési idő lecsökkenését, ezáltal pedig a jobb betegellátást biztosította, hiszen az applikátorok kevésbé tudtak elmozdulni a rövidebb kezelés alatt. Ez a módszer már lehetővé tette a dózisoptimalizálást is. Ma az individuális dózistervezést a számítógépes besugárzástervezés és az orvosi képalkotó eljárások használata teszi könnyebbé és pontosabbá [5].

A metszetképalkotó eljárásokon (CT, MRI, UH, PET) és a különböző képmodalitások fúzióin alapuló besugárzástervezés nagymértékben növelte a sugárterápiás kezelések minőségét, hatékonyságát. A páciensről kapott 3D-s anatómiai információk összessége lehetővé teszi a pontosabb céltérfogatmeghatározást és a védendő szervek egyértelműbb kijelölését, mely nagymértékben elősegíti a képvezérelt tervezést és az applikátor-, katéter-implantációt (IGABT) [6,7].

A barchyterápia elterjedéséhez nagyban hozzájárult, a főként a nyugati országokban és az Egyesült Államokban, a prosztata- és nőgyógyászati daganatok hirtelen megnőtt gyakorisága [8].

## 2. BRACHYTERÁPIA

A brachyterápiás kezelés során kisméretű, zárt radioaktív sugárforrást / sugárforrásokat juttatnak applikátorok, tűk, illetve katéterek segítségével a kezelendő szövetekbe, testüregekbe vagy a daganatok közvetlen közelébe. Ennek a lokális kezelési módszernek az előnye, hogy a speciális dózisviszonyok miatt – mely a sugárforrás és a besugárzandó térfogat közelségéből adódik – nagy dózist lehet kiszolgáltatni a céltérfogatra, miközben a körülötte levő ép szövetek és védendő szervek kis dózisterhelést kapnak. A kívánt dóziseloszláshoz a sugárforrásokat, megfelelő térbeli elrendezésben kell elhelyezni, mivel a BT-s források körüli dóziseloszlás kialakulásban a távolságnak van a legnagyobb szerepe. Geometriai okok miatt, egy pontforrástól távolodva a dózis – a távolság négyzetével fordítottan arányosan – meredeken csökken. Ennek következményeként a sugárforrások közvetlen közelében mindig nagy dózisok alakulnak ki, de a megfelelő térbeli elrendezéssel relatív homogén dóziseloszlás érhető el. A sugárforrások megfelelő elrendezése tehát nagymértékben függ a céltérfogat alakjától, nagyságától.

Fontos megjegyezni azt is, hogy a BT-s kezeléseknél a kisebb kezelt térfogat miatt – hiszen a klinikai céltérfogat (CTV) gyakorlatilag megegyezik a tervezési céltérfogattal (PTV) – a védendő szervek nagyobb mértékű kímélése érhető el [9] szemben a TT-val.

A sugárforrásoknak, céltérfogathoz viszonyított helyzete alapján többféle brachyterápiás technikát különböztetünk meg [10-12]:

- **Intrakavitális BT**: ebben az esetben a sugárforrást testüregbe helyezik el applikátorok segítségével. Főként nőgyógyászati (méhnyak, méhtest és vagina) kezeléseknél használják.

- **Intersticiális BT**: tűk és katéterek segítségével a sugárforrást – sebészi eljárással – helyezik magába a daganatba. Főként fej-nyaki, emlő-, és prosztatadaganatok esetén alkalmazzák.

- **Intraluminális BT**: a nyelőcsövön vagy a légcsövön keresztül levezetett vékony műanyag katéterrel vagy szondával juttatják el a sugárforrást a kezelendő területhez.

- Felületi BT: a test felszínén, vagy annak közelében elhelyezkedő daganatok (pl. bőr) esetén. Speciális alkalmazási területe a szem kötőhártyáján elhelyezkedő daganatok kezelése.

- Intravaszkuláris BT: érszűkületek kezelésénél, főként a restenosis kialakulásának megelőzésére alkalmazzák [13].

A brachyterápiás kezelések csoportosíthatók dózisteljesítmény alapján is:

- LDR ("low-dose-rate"), alacsony dózisteljesítményű terápia, ≤ 2 Gy/óra

- MDR ("medium-dose-rate"), közepes dózisteljesítményű terápia, 2 Gy/óra - 12 Gy/óra

- HDR ("high-dose-rate"), magas dózisteljesítményű terápia, ≥ 12 Gy/óra

- **PDR** ("pulsed-dose-rate"), kis dózisteljesítményű terápia, a kezelés óránkénti frakcionálással történik. A technika lényege, hogy ötvözi a kis dózisteljesítmény kedvező biológiai hatásait és az utántöltéses ("afterloading") technika nyújtotta előnyöket.

#### 2.1. Prosztatadaganatok brachyterápiája

A prosztatadaganatok előfordulása világszerte igen gyakori, hazánkban a Központi Statisztikai Hivatal adatai alapján 1990-ben a prosztatarák okozta halálozások a negyedik helyen álltak, 2003-tól viszont már a harmadik helyre kerültek, a férfiaknál pedig jelenleg is ez az egyik leggyakoribb rosszindulatú daganatos megbetegedés [14-17]. Kezelése műtéti úton, sugárterápiával (BT, TT), hormonterápiával, ezek kombinációjával, illetve aktív követéssel történik. Grimm és munkatársai [18] vizsgálatai alapján ezen lehetőségek közül alacsony kockázat esetén BT-val érhető el a legjobb terápiás eredmény. A közepes kockázatú betegcsoportban a BT, mint monoterápia eredményei is kedvezőbbnek bizonyultak, mint a műtéti vagy szimpla TT-val elért eredmények. Más vizsgálatok kimutatták azt is, hogy az előrehaladott prosztataráknál a dózisnövelés jelentősen növelheti a mellékhatások arányát az esetleges lokális és biokémiai kontroll javulása mellett [19-21]. Ennek ismeretében a dózis növelésére, a védendő szervek hatékonyabb megóvása mellett, a BT-s kiegészítő ("boost") kezelés megfelelő módszernek bizonyul.

A prosztata kezeléseknél kétfajta BT-t használnak:

- HDR, vagyis nagy dózisteljesítményű izotóppal (<sup>192</sup>Ir) végzett tűzdelés;
- LDR, vagyis kis dózisteljesítményű, ami ún. "seed"-ekkel (<sup>125</sup>I) történő permanens beültetést jelent (PIPB);

Védendő szervek prosztata brachyterápia esetén a rectum és az urethra.

#### 2.1.1. LDR-BT

Általában a kis és közepes kockázatú betegek esetén elfogadott gyógymód a kis dózisteljesítményű permanens implantációs prosztata brachyterápia (PIPB). LDR kezelésnél apró, fémtokba zárt alacsony aktivitású sugárforrásokat *(3. ábra)* helyeznek a prosztatába, melyek a HDR-es kezelésekkel ellentétben a beavatkozás után végleg a beteg testében maradnak. Ezeket a kis kapszulákat magoknak, "seed"-eknek is nevezik. A I-125 sugárforrások a felezési idejüknek (~ 60 nap) megfelelően több hónap alatt elnyújtva adják le a prosztatában a kívánt dózist. A módszer előnye, hogy a beültetés mindössze 1-2 napos kórházi benntartózkodást igényel és kevés mellékhatással jár. Az Országos Onkológiai Intézet Sugárterápiás Központjában 2008 decemberében végezték el az első permanens implantációs prosztata brachyterápiát, ettől kezdve a kezelt prosztatadaganatos betegek LDR "seed" terápiája, monoterápia [12,23].

Az I-125 gammasugárzó izotóp, átlagos fotonenergiája 0,028 MeV, felezési ideje 60,2 nap. A "seed"-ek ~4,5 x 0,8 mm-es hengeres szimmetriájú vékony titán kapszulák, amik

tartalmazzák a sugárforrást. A kis energia miatt a "seed" mindkét végénél jelentős mértékű anizotrópia lép fel a dóziseloszlásban.



Bebig model 125.S06 source

#### 1. ábra Bebig I-125 S06 sugárforrás ("seed")

#### 2.1.2. HDR-BT

A szövetközi nagy dózisteljesítményű brachyterápiás kezelés esetén a sugárforrás ún. "afterloading", vagyis utántöltéses technikával (1. ábra), távvezérléssel kerül a megfelelő katéterekbe / tűkbe, tehát az applikátor (2. ábra) behelyezése az aktív sugárforrás nélkül történik, ami a személyzet sugárvédelme szempontjából rendkívül fontos. A HDR technika előnye, hogy a kezelések időtartama jelentősen lerövidíthető (15-20 perc), illetve ebből kifolyólag az applikátorok elmozdulásának valószínűsége is csökken. Tervezésnél megadható a sugárforrások egyes pozíciókban való tartózkodásának ideje, így a referencia izodózisfelület jól illeszthető a céltérfogathoz. Ehhez különböző dózisoptimalizálási algoritmusokat, illetve inverz tervezési technikát használnak. Az Országos Onkológiai Intézet (OOI) Sugárterápiás Központjában kezelt prosztatadaganatos betegek HDR terápiája lehet monoterápia, kiegészítő ("boost"), illetve recidíva kezelés is.

A használt sugárforrás (Ir-192), gammasugárzó izotóp, kezdeti aktivitása 370 GBq (10 Ci) körüli, átlagenergiája 0,38 MeV, felezési ideje 74,2 nap, tehát átlagosan 3 havonta kell a készülékben forrást cserélni. A forrást tartalmazó hengeres fém kapszula mérete ~5 x 1,1 mm, a radioaktív forrás pedig ~3,6 x 0,65 mm-es [22].



2. ábra Remote afterloading készülék



3. ábra HDR-BT applikátorok

## 3. CÉLKITŰZÉSEK

Diplomamunkám egyik célja, az Országos Onkológiai Intézetben elérhető, kis dózisteljesítményű permanens prosztata brachyterápiás technika intraoperatív és posztimplantációs terveinek dozimetriai szempontból történő összehasonlítása a céltérfogat és a védendő szervek tekintetében. Ehhez a következő feladatokat végeztem el:

- A 4 hetes CT és MRI képek tervezőrendszerbe történő importálása, a képek fuzionálása, majd a sugárforrások helyzetének egyenkénti azonosítása;
- A BT-s dóziseloszlások kiszámolása és a tervek kvantitatív elemzése;
- A besugárzási tervek dózisparamétereinek statisztikai módszerekkel történő összehasonlítása a céltérfogat ellátottság tekintetében.

Diplomamunkám másik célja volt, hogy az adott, kis dózisteljesítményű permanens brachyterápiás tervekhez nagy dózisteljesítményű sugárforrással helyettesített terveket készítsek, illetve fordítva. A következő feladatokat végeztem el:

- A bekontúrozott ultrahang-alapú tervek alapján besugárzási tervek készítése a kezelésre nem használt technikára;
- A tervek dóziseloszlásainak, térfogati paraméterek használatával történő kvantitatív elemzése, összehasonlítása;
- A védendő szervek térfogati dózisviszonyainak vizsgálata, összehasonlítása;

## 4. MÓDSZEREK

Diplomamunkám elkészítéséhez véletlenszerűen választottam ki összesen 65 olyan beteget, akiket alacsony, közepes, illetve magas kockázatú prosztatarákkal diagnosztizáltak. Ezen betegek közül többen a választás mikéntjéből kifolyólag egy ellenőrzött kutatásban / tanulmányban ("study") is érintettek. Korábbi sugárterápiás kezelése egyik betegnek sem volt. Az összes kiválasztott, LDR-BT-val kezelt betegnél kötött "seed"-es technikát alkalmaztak. Különböző szakirodalmak és vizsgálatok alapján szignifikáns különbség van a szabad *(4. ábra)* és a kötött *(5. ábra)* "seed"-es technikák között, mind a dózis-térfogat paraméterek [24-26], mind például az implantációt követő seed elvándorlás tekintetében [27]. A szabad sugárforrásos módszernél a tűn belül bármilyen konfigurációban lehetnek a "seed"-ek, akár két forrás is kerülhet egymás mellé. A kötött "seed"-ek használata esetén csak a tű aktív hossza határozható meg, az egymástól 1 cm-re levő, műanyag távtartókkal elválasztott sugárforrások számának megadásával.



4. ábra Szabad sugárforrásos elrendezés



5. ábra Kötött sugárforrásos elrendezés

Diplomamunkámnak nem célja vizsgálni a fent említett technikák sajátosságait, így erre külön nem tértem ki. A szintén véletlenszerűen kiválasztott HDR-BT-val kezelt betegek egyszeri frakcióként vagy kiegészítő kezelésként kapták meg az előírt dózist és közülük is többen részt vesznek a már fentebb említett "study"-ban.

### 4.1. Dozimetriai elemzés

A dóziseloszlások kvantitatív értékeléséhez az AAPM [28] és az ESTRO/EAU/EORTC [29] ajánlása szerinti paramétereket használtam. A kezelés után a dózis térfogat hisztogramokkal [30] részletesen kiértékeltem a dózisterveket. Minden egyes kezelési tervre térfogati-, és dózisparamétereket, illetve minőségi indexeket számoltam.

#### 4.1.1. Dóziseloszlások értékelése

Az intra- és posztimplantációs tervek dóziseloszlásainak kvantitatív értékelésére az alábbi paramétereket használtam:

#### **Prosztata**:

V100 (%), V150 (%), D90 (%), V90 (%), V200 (%), D100 (%), DHI, COIN,

Vp ( $cm^3$ ), Vref ( $cm^3$ );

A posztimplantációs terveknél a védendő szervek (urethra, rectum) dóziseloszlása nem határozható meg kellő pontossággal a CT- és az MR-képsorozatokon, így ezen tervek esetén csak a céltérfogat ellátottságát vettük figyelembe [31].

A kis- és nagy dózisteljesítményű tervek kiértékeléséhez a következő paramétereket használtam:

### Prosztata:

V100 (%), V150 (%), D90 (%), V90 (%), V200 (%), D100 (%), DHI, COIN, Vp (cm<sup>3</sup>), Vref (cm<sup>3</sup>);

#### Urethra:

D10 (%), D30 (%), Dmax (%), D0,1cm3 (%), D0,01cm3 (%), Vu (cm<sup>3</sup>);

#### Rectum:

D2cm<sup>3</sup> vagy Da2000 (%), D1cm<sup>3</sup> (%), D0,01cm<sup>3</sup> (%), D0,1 cm<sup>3</sup> vagy Da100 (%), Dmax (%), D10 (%), Vr (cm<sup>3</sup>);

A betegcsoport besugárzási terveiben kiszámítottam a fenti paraméterek átlagát, szórását, illetve statisztikai analíziseket is végeztem.

#### 4.1.2. Térfogati- és dózisparaméterek

#### Céltérfogat - Prosztata:

V100 (%), V150 (%), V90 (%), V200 (%): az a relatív térfogat, ami a PTV referenciadózisának legalább a 100, 150, 90 és 200 % - át megkapta;

Vp (cm<sup>3</sup>), Vref (cm<sup>3</sup>): a PTV térfogata és a referenciadózis által lefedett térfogat;

D90 (%), D100 (%): a PTV 90, illetve 100%-át besugárzott minimális dózis;

#### Védendő szerv - Urethra:

D10 (%), D30 (%): az urethra legnagyobb dózist kapott 10, illetve 30%-ának dózisa;

Dmax: a maximális pontdózis az urethrában;

D0,01 (%), D0,1 (%): az urethra legnagyobb dózist kapott 0,01, illetve 0,1 cm<sup>3</sup>-ének dózisa;

Vu (cm<sup>3</sup>): az urethra térfogata;

#### Védendő szerv - Rectum:

D2cm<sup>3</sup> (%) vagy Da2000 (%), D1cm<sup>3</sup> (%): a rectum legnagyobb dózist kapott 2, illetve 1 cm<sup>3</sup>-ének dózisa;

D0,01 (%), D0,1 (%) vagy Da100 (%): a rectum legnagyobb dózist kapott 0,01, illetve 0,1 cm<sup>3</sup>-ének dózisa;

Dmax (%): a maximális pontdózis a rectumban;

D10 (%): a rectum legnagyobb dózist kapott 10%-ának dózisa;

Vr (cm<sup>3</sup>): a rectum térfogata;

#### 4.1.3. Minőségi indexek

DHI: Dose Homogenity Index - dózishomogenitási index (1) [32,33],

$$DHI = \frac{V100 - V150}{V100},$$
(1)

ahol, V100 és V150 a PTV-n belül a referenciadózis 100 és 150%-a által besugárzott relatív térfogat (%). Minél nagyobb a hányados értéke, annál homogénebb a dóziseloszlás;

CI: Coverage Index – lefedettségi index (2),

$$CI = \frac{V100}{100},$$

(2)

ahol, V100 a referenciadózis 100 %-a által besugárzott relatív PTV térfogat (%). Megmutatja, hogy a referenciadózist a céltérfogat mekkora része kapja meg. Értéke 0 és 1 között van, a maximális értéke általában nem érhető el a védendő szervek toleranciadózisa miatt.

COIN: Conformal Index – konformalitási / illeszkedési index (3) [34],

$$COIN = \frac{PTV_{ref}}{V_{PTV}} * \frac{PTV_{ref}}{V_{ref}} = CI * \frac{PTV_{ref}}{V_{ref}},$$
(3)

ahol,  $V_{ref}$  a referenciadózis által besugárzott térfogat ( $V_{ref} = V100$ );  $PTV_{ref}$  a PTV referenciadózissal besugárzott térfogata, ami megegyezik a céltérfogat és a referencia izodózis felület által közrefogott térfogat metszetével. Ez az index megadja a céltérfogat referenciadózissal való lefedettségét, illetve azt, hogy a normálszövet ugyanebből a dózisból mekkora részt kap. Minél nagyobb ez a hányados, annál jobban illeszkedik a dóziseloszlás a kívánt értékhez, ideális értéke 1.

#### 4.2. Intraoperatív és posztimplantációs dozimetria

### 4.2.1. LDR-BT technika és intraoperatív dozimetria

A kezelés előtt egy-két héttel szükség van egy felmérő vizsgálatra, ahol ellenőrzik, hogy a beteg alkalmas-e a beavatkozásra. Transzrektális ultrahang (UH) segítségével megmérik a prosztata térfogatát, ami alapján megbecsülik a beültetendő "seed"-ek, illetve tűk számát. A sugárforrásokat minden kezeléshez egyedileg, személyre szabottan rendelik meg. A kezelés spinális érzéstelenítésben történik. A beteg előkészítése után UH-detektort vezetnek a rektumba az urethra prosztatikus szakaszával párhuzamosan, mellyel 1°-onként longitudinális szeleteket készítenek a prosztatáról és annak környezetéről. Az ultrahang felvételeket továbbítják a régebben, SPOT PRO 3.1 (Elekta Brachytherapy, Veendaal, Hollandia) 2016 júliusától pedig az Oncentra Prostate (Elekta Brachytherapy, Veendaal, Hollandia) besugárzástervező rendszerbe, ami térben rekonstruálja a prosztata anatómiáját transzverzális, szagittális, és koronális síkokban. Az orvos az axiális síkokon berajzolja a céltérfogat (teljes prosztata) és a védendő szervek, a húgycső, és a végbél kontúrjait [10]. Az urethrát 7 mm átmérőjű körrel, a rectum belső felszínét pedig 5 mm-es sávként rajzolja meg az UH-detektor körül [23]. A kontúrozást követően előterv készül egy anatómia-alapú inverz optimalizálási módszerrel (IPSA) [35]. A prosztatára előírt dózis 145 Gy, az AAPM (American Association of Physicists in Medicine) ajánlásai alapján [36,37]. A szoftver ezek alapján számolja ki a dóziseloszlást, megadja a tűk és a sugárforrások számát és helyzetét. Szükség esetén a virtuális tűk vagy a sugárforrások helyzete manuálisan módosítható. Az optimális besugárzási terv elérése érdekében dózis-térfogat hisztogram (DVH) paramétereket és az ezekből származtatott minőségi indexeket kell számolni. Ezt követően kezdődik a sugárforrások betöltése a tűkbe manuális technikával, egy speciális vágó-töltő eszköz használatával.

A tűk beszúrását valós idejű UH-kép segítségével végzik el, és ezzel egyidejűleg a beszúrt tű helyzetének megfelelően módosítják a terven megadott tű helyzetét. Minden egyes változtatás után a besugárzási terv valós időben módosul. Az tűzdelés végeztével ellenőrzik a tervet, majd az esetleges módosítások elvégzése után elfogadják azt. A tűzdelés végén a prosztatáról és környezetéről RTG-felvételt készítenek, és ellenőrzik a beültetett "seed"-ek számát és helyzetét *(6. ábra)*.



6. ábra Verifikációs röntgen kép

A beültetést követő napon CT-felvételt készítenek a betegről 3 mm-es transzverzális szelettávolsággal az izotópok pozíciójának és számának ellenőrzéséhez.

A I-125 izotóppal végzett PIPB kezelések esetében az izotóp felező rétegvastagsága szövetben kb. 2 cm, ólomban 0,02 mm, így nincs szükség speciális sugárvédelmi szabályok alkalmazására, mivel a személyzet számára a sugárterhelés nem jelentős [12,23].

#### 4.2.2. Posztimplantációs dozimetria

A beavatkozás után egy hónappal, metszetképalkotó (CT, MRI) eljárás segítségével kell meghatározni a végleges dóziseloszlást [29,38]. Egyes vizsgálatok szerint az első hónap után már nem történik jelentős változás a sugárforrások helyzetében, és így a dóziseloszlás nem, vagy csak kis mértékben fog módosulni [39].

Diplomamunkám során 15 beteg négy hetes kontroll CT/MRI adatait továbbítottam a SPOT PRO tervezőrendszerbe. 3-5 "seed" [40] azonosításával (pont a ponthoz illesztéssel) képfúziót végeztem, majd egy orvos segítségével bekontúroztuk a céltérfogatot (7-9. ábra). A CT adatait a "seed"-ek felismerésére, az MRI információt a prosztata helyzetének megállapítására alkalmaztam, mivel a CT képen a "seed"-ek nagy denzitással jelennek meg és jól azonosíthatók a sugárforrást magában foglaló fém kapszulának köszönhetően. A T2súlyozott MRI képen a "seed"-ek jelszegény foltokként jelentkeznek, így nehezen ismerhetőek fel. A CT-n automatikus sugárforrás-felismerő algoritmus segítségével kerestem meg az összes beültetett izotópot, majd ezek helyzete alapján kiszámoltam a dóziseloszlást. Végül az elkészített posztimplantációs besugárzási tervet ellenőriztem, kiértékeltem, majd a dózis-térfogat hisztogram alapján és a dóziseloszlások segítségével



7. ábra Posztimplantációs CT felvétel (a prosztata piros vonallal jelölve)



8. ábra Posztimplantációs MRI felvétel (a prosztata piros vonallal jelölve)

## BME-TTK



9. ábra CT/MRI fúzió (a céltérfogat piros kontúrral, az azonosított sugárforrások zölddel jelölve)



10. ábra Intraoperatív dóziseloszlás (sárgával a 120%-os, zölddel a 100%-os, kékkel a 75%-os izodózis jelölve)



11. ábra Posztimpantációs dóziseloszlás (pirossal a céltérfogat, sárgával a 120%os, zölddel a 100%-os, kékkel a 75%-os izodózis jelölve)

## 4.3. LDR- és HDR-BT-s dozimetria

#### 4.3.1. LDR-BT-val kezelt betegek HDR tervei

Az LDR-BT az előzőekben leírtaknak megfelelően történt. 25 beteg LDR-BT-s előtervéből a már meglévő kontúrozott (PTV, védendő szervek) UH-képkészletek alapján, adott paraméterekkel HDR terveket készítettem az Oncentra Prostate tervezőrendszer segítségével, majd az adatokat kiértékeltem (12-13. ábra).

A PTV-re minden esetben 19 Gy dózist írtam elő egy frakcióban.

Sugárforrásként Ir-192-t használtam és a szoftverben a következő adatokkal számoltam:

- kezdeti aktivitás: 294729,85 MBq,
- standard aktivitás: 32515,87 cGy \* cm<sup>2</sup> (7965,67 mCi),
- $T_{1/2} = 73,83$  nap,
- $\gamma = 1,108 \text{ cGy} * \text{h}^{-1} * \text{U}^{-1}$ ,
- Kerma konstans 4,082 U \* mCi<sup>-1</sup>.
- A forrás geometriailag hengeres szimmetriájú (CYLINDER), hossza 3,6 mm, átmérője 0,65 mm, tokozása 0,2 mm vastag nemesacél kapszula. A virtuális fém katéterek hossza 200 mm, átmérőjük 1,5 mm volt. A kezelés a microSelectron HDR V3 afterloading készülékre (Elekta Brachytherapy, Veendaal, Hollandia), léptető technikával lett tervezve.

A tervezéshez az alábbi táblázatban szereplő előírásokat követtem (1. táblázat) [41]:

| Prosztata   | Urethra     | Rectum        |
|-------------|-------------|---------------|
| V100 ≥ 97 % | D10 ≤ 120 % | Da2000 ≤ 65 % |
|             | D30 ≤ 110 % | Da100 ≤ 85 %  |

1. táblázat A céltérfogat és a védendő szervek dóziselőírásai HDR tervek

készítésénél

### BME-TTK



12. ábra LDR-BT terv egy axiális síkja (pirossal a céltérfogat, sárgával a 150%-os, zölddel a 100%-os, kékkel a 80%-os izodózis jelölve)



13. ábra LDR-BT-val kezelt beteg HDR tervének egy axiális síkja (pirossal a céltérfogat, narancssárgával a 200%-os, sárgával a 150%-os, lilával a 100%-os, kékkel az 50%-os izodózis jelölve)

#### 4.3.2. HDR-BT technika

A GEC/ESTRO-EAU ajánlás alapján [42] PTV-nek ebben az esetben is a teljes prosztatát kell választani. A prosztata felszínére előírt referenciadózis (100%) a "study"-ban résztvevő betegek esetében 19 Gy, míg a többi betegnél 10 Gy volt.

A HDR-BT-s tűzdelések spinális anesztéziában, transzrektális UH-vezérléssel 200 mm hosszú, 1,9 mm átmérőjű fémtűk prosztatába való behelyezésével történnek. A besugárzástervezéshez transzverzális UH-képek készülnek. Referenciasíknak általában a prosztata legnagyobb keresztmetszetét választják, a tervezés az Oncentra Prostate tervezőrendszer használatával történik. Amennyiben a besugárzási terv megfelelőnek bizonyul, a tűzdelés végeztével a tűk helyzetének ellenőrzése következik anterior-posterior és laterális irányú RTG-felvételekkel. A besugárzás a microSelectron HDR V3 afterloading készülékkel, léptető technikával történik. Miután az "afterloading" készüléket rácsatlakoztatták a tűkre, a készülék először egy ellenőrzést végez a tűk átjárhatósága szempontjából, majd az izotópot az összes kijelölt csatornába eljuttatja és a megadott ideig ott tartja. A kezelés végén a sugárforrás visszakerül az ólommal árnyékolt, sugárvédelmi szempontból biztonságos tárolóhelyre, a tűket pedig eltávolítják a betegből.

#### 4.3.3. HDR-BT-val kezelt betegek LDR tervei

Diplomamunkámban 25 HDR-BT-val kezelt beteg bekontúrozott (PTV, védendő szervek) UH képsorozataira készítettem LDR besugárzási tervet az Oncentra Prostate tervezőrendszer segítségével (14-15. ábra).

A PTV-re minden esetben 145 Gy dózist írtam elő.

Forrásként kötött ("stranded") I-125 "seed"-eket (Bebig 125.S06) használtam és a szoftverben a következő adatokkal számoltam:

- a standard aktivitás:  $0,713 \text{ cGy} * \text{cm}^2 / \text{h} (0,562 \text{ mCi}),$
- $T_{1/2} = 59,4$  nap,
- $\gamma = 1.01 \text{ cGy} * \text{h}^{-1} * \text{U}^{-1}$ ,
- Kerma konstans -1,27 U \* mCi<sup>-1</sup>.
- A használt sugárforrás geometriailag hengeres szimmetriájú (CYLINDER), hossza
   3,5 mm, átmérője 0,6 mm, tokozása 0,55 mm vastag nemesacél kapszula.

A kötött "seed"-ek esetében megengedhető, hogy "seed"-ek kerüljenek a prosztata kontúron kívülre (max. 2-3mm), mivel az egymáshoz kötöttség miatt az elvándorlás lehetősége minimális.

A tervezések során a prosztata teljes térfogatának legalább a 95%-a meg kell hogy kapja az előírt dózist, ellenkező esetben előfordulhat aluldozírozás melynek következménye a nagyobb daganatkiújulási arány.

A tervezéshez az alábbi táblázatban (2. táblázat) szereplő előírásokat követtem [28,29]:

| Prosztata   | Urethra     | Rectum        |
|-------------|-------------|---------------|
| V100 ≥ 97 % | D10 ≤ 150 % | Da2000 ≤ 65 % |
| D90 ≥110 %  | D30 ≤ 130 % |               |

2. táblázat A céltérfogat és a védendő szervek dóziselőírásai LDR tervek készítésénél

#### BME-TTK



14. ábra HDR-BT terv egy axiális síkja (pirossal a céltérfogat, narancssárgával a 200%-os, sárgával a 150%-os, lilával a 100%-os, kékkel az 50%-os izodózis jelölve)



15. ábra HDR-BT-val kezelt beteg LDR-BT tervének egy axiális síkja (pirossal a céltérfogat, sárgával a 150%-os, zölddel a 100%-os, kékkel a 80%-os izodózis jelölve)

## 4.4. Statisztikai elemzés

Az elemzést a Microsoft Office Excel 365 ProPlus-sal (Microsoft, USA), a MedCalc (Microsoft Partner, Belgium), illetve a SSPS (IBM, USA) programmal végeztem. A szignifikancia szintet minden esetben p=0,05-nek vettem.

## 5. EREDMÉNYEK

### 5.1. Az intraoperatív és posztimplantációs tervek összehasonlítása

Az összes adatot tartalmazó részletes táblázatot a melléklet (*1-2. melléklet*) tartalmazza. A referenciadózis által besugárzott térfogatra (Vref) 53,2 cm<sup>3</sup>, a prosztata térfogatra (Vp /intraoperatív/) 36,3 cm<sup>3</sup>, négy héttel a beavatkozás után pedig ugyenerre a térfogatra (Vp /postimplantációs/) 38,7 cm<sup>3</sup> átlagértékeket kaptam. Vizsgálataim során erős korrelációt állapítottam meg a behelyezett tűk és a beültetett "seed"-ek száma között (*16. ábra*), illetve a prosztata térfogata (Vp) és a beültetett sugárforrások száma között (*17. ábra*).



16. ábra A tűk és sugárforrások számának korrelációja



17. ábra A prosztata térfogata és a sugárforrások száma közötti korreláció

A posztimplantációs tervek esetén négy betegnél azonosított egyel kevesebb "seed"et az automatikus sugárforrás-felismerő algoritmus. További ellenőrzésekkel meg lehetne vizsgálni, hogy ez az ún. sugárforrás-elvándorlás következménye-e, vagy az algoritmus érzékenységén kellene-e változtatni, de ennek meghatározása diplomamunkámnak nem képezi részét.

Az összetartozó (intraoperatív és posztimplantációs) adatokat grafikonon is ábrázoltam a könnyebb szemléltetés érdekében, melyet a mellékletek rész (*3. melléklet*) tartalmaz. Az adatokon először Shapiro-Wilk normalitáspróbát végeztem, hogy megállapítsam az adatok normál eloszlást követnek-e vagy sem [43]. A próba során majdnem minden adatsor normál eloszlásúnak bizonyult, ezekre a statisztikai kiértékelést párosított t-próbával végeztem [44]. Az adatok közül a V90 (%) és a D100 (%) paraméterek esetében (nem normál eloszlás) a Wilcoxon-féle előjeltesztet használtam [45]. Az eredményeket, a szignifikanciaszintek feltüntetésével a (*3. táblázat)* tartalmazza:

|           | Intraoperatív | Posztimplantációs | Százalékos eltérés        |         |
|-----------|---------------|-------------------|---------------------------|---------|
| Paraméter | átlag (%)     | átlag (%)         | (intraoperatívhoz képest) | p-érték |
| V100 (%)  | 99            | 86                | -13                       | < 0,001 |
| V150 (%)  | 58            | 48                | -17                       | 0,005   |
| D90 (%)   | 122           | 91                | -25                       | < 0,001 |
| V90 (%)   | 100           | 90                | -10                       | < 0,001 |
| V200 (%)  | 19,8          | 20,2              | +2                        | 0,854   |
| D100 (%)  | 81            | 47                | -42                       | < 0,001 |
| DHI       | 0,41          | 0,45              | +10                       | 0,17    |
| COIN      | 0,66          | 0,52              | -21                       | < 0,001 |

3. táblázat Az intraoperatív és a posztimplantációs paraméterek összehasonlítása

A posztimplantációs átlagértékeknél több paraméter értékeinek esetében csökkenés volt megfigyelhető az intraoperatív átlagértékekhez képest:

a legnagyobb csökkenés a D100-nál (81%-ról 47%-ra) volt megfigyelhető, itt 42%-os eltérés látható. A D90-nél (122%-ról 91%-ra) átlagosan 25%-os csökkenés volt megfigyelhető. Fontos megemlíteni, hogy a csökkenés a V100-nál is jelentős, mivel ezesetben az átlagos 99%-os értékről 86%-ra esett, tehát a céltérfogat referenciadózissal való lefedettsége csökkent. A COIN értékének megváltozása jelzi a céltérfogat lefedettségének romlását, illetve az ép szövetek felesleges besugárzásának a növekedését.

A vizsgált paraméterek közül kettőnél tapasztaltam közel azonos értéket vagy növekedést:

```
a V200, 2%-kal (19,8%-ról 20,2%-ra) nőtt, illetve a DHI (0,41%-ról 0,45%-ra) 10%-kal nőtt.
```

Ezekből az értékekből megállapítható, hogy négy héttel a beavatkozást követően a dóziseloszlás kis mértékben homogénebb lett, míg a konformitás csökkent. A különbségek minden paraméter esetén szignifikánsnak bizonyultak, kivétel a V200-at és a DHI-t.

Adataimból kederül, hogy a posztimplantációs terveken a céltérfogat ellátottságában csökkenést tapasztalunk az intraoperatív értékekhez képest.

### 5.2. Az LDR- és HDR-BT-s tervek összehasonlítása

Az összes adatot tartalmazó részletes táblázatokat, és az összetartozó (LDR-HDR) adatsorokhoz készített grafikonokat a mellékletek rész tartalmazza (4-9. melléklet). Az általam elkészített tervek minden esetben megfeleltek a dóziselőírásoknak, dózismegszorításoknak.

A referenciadózis által besugárzott térfogatra (Vref) 48,1 cm<sup>3</sup>, a prosztata térfogatra (Vp) pedig 37,4 cm<sup>3</sup> átlagértékeket kaptam. Ezen vizsgálatok során is erős korrelációt állapítottam meg a felhasznált LDR-es tűk és a beültetett "seed"-ek száma között (*18. ábra*), illetve a prosztata térfogata (Vp) és a beültetett sugárforrások száma között (*19. ábra*). Az LDR-es tűk száma és a HDR-es tűk száma között nem volt korreláció (*20. ábra*).



18. ábra Az LDR tűszámok és a sugárforrások száma közötti korreláció
#### BME-TTK



19. ábra A prosztata térfogata és a sugárforrások száma közötti korreláció



20. ábra Az LDR- és a HDR-BT tűszámai között nincs korreláció

Az összes adatsoron Shapiro-Wilk normalitáspróbát végeztem, hogy megállapítsam az adatok normál eloszlást követnek-e vagy sem [43]. A próba során csak a prosztata V150 (%), és a rectum D2cm<sup>3</sup> (%) paramétere mutatott normál eloszlást, ezekre a statisztikai kiértékelést párosított t-próbával végeztem [44]. A többi paraméter eseténben (nem normál eloszlás) a Wilcoxon-féle előjeltesztet használtam [45]. Az eredményeket a céltérfogatra és a védendő szervekre, a szignifikanciaszintek feltüntetésével a (*4. táblázat*) tartalmazza:

| Prosztata adatai | Át   | lag  | Százalékos eltérés | Szó  | orás | p-érték                      |
|------------------|------|------|--------------------|------|------|------------------------------|
|                  | seed | HDR  | (seed-hez képest)  | seed | HDR  | (Wilcoxon-féle előjel teszt) |
| Vref (cm3)       | 52,1 | 44,1 | -15                | 13,1 | 15   | -                            |
| Vp (cm3)         | 37   | ',4  | -                  | 11   | ,6   | -                            |
| V100 (%)         | 98   | 97   | -1                 | 0,7  | 0,8  | < 0,001                      |
| V150 (%)         | 59   | 32   | -46                | 5,7  | 4,4  | < 0,001                      |
| D90 (%)          | 120  | 110  | -8                 | 3,4  | 1,7  | < 0,001                      |
| V90 (%)          | 100  | 100  | <1                 | 0,5  | 0,4  | 0,074                        |
| V200 (%)         | 24   | 10   | -58                | 4,0  | 1,9  | < 0,001                      |
| D100 (%)         | 75   | 80   | +7                 | 7,7  | 4,1  | < 0,001                      |
| DHI              | 0,41 | 0,67 | +63                | 0,07 | 0,05 | < 0,001                      |
| COIN             | 0,70 | 0,78 | +11                | 0,04 | 0,04 | < 0,001                      |
|                  |      |      |                    |      |      |                              |
| Urethra adatai   | Át   | lag  | Százalékos eltérés | Szó  | orás | p-érték                      |
|                  | seed | HDR  | (seed-hez képest)  | seed | HDR  | (Wilcoxon-féle előjel teszt) |
| Vu (cm3)         | 1,0  | 61   | -                  | 0,   | 29   | -                            |
| D10 (%)          | 135  | 117  | -13                | 5,3  | 1,8  | < 0,001                      |
| D30 (%)          | 128  | 113  | -12                | 4,6  | 1,8  | < 0,001                      |
| D0.01cm3 (%)     | 146  | 120  | -18                | 8,2  | 3,1  | < 0,001                      |

| Rectum adatai | Át   | lag | Százalékos eltérés | Szó  | brás | p-érték                      |
|---------------|------|-----|--------------------|------|------|------------------------------|
|               | seed | HDR | (seed-hez képest)  | seed | HDR  | (Wilcoxon-féle előjel teszt) |
| Vr (cm3)      | 6,   | 34  | -                  | 1,   | 69   | -                            |
| D2cm3 (%)     | 63   | 58  | -8                 | 13,8 | 6,0  | 0,001                        |
| D0.1cm3 (%)   | 93   | 78  | -16                | 18,6 | 5,0  | < 0,001                      |
| D0.01cm3 (%)  | 102  | 83  | -19                | 19,5 | 5,5  | < 0,001                      |
| Dmax (%)      | 112  | 84  | -25                | 34,3 | 5,8  | < 0,001                      |
| D1cm3 (%)     | 73   | 65  | -11                | 13,9 | 6,0  | < 0,001                      |
| D10 (%)       | 79   | 69  | -13                | 14,1 | 5,8  | < 0,001                      |

16,2

5,1

6,1

1,7

< 0,001

< 0,001

-21

-14

Dmax (%)

D0.1cm3 (%)

156

137

123

118

4. táblázat Az LDR és HDR adatok összehasonlítása

A céltérfogat, vagyis a prosztata adatainál látható hogy majdnem minden paraméter esetében szignifikáns különbség adódott az LDR és a HDR adatsorok között. Az egyetlen adat, melyre nem kaptam szignifikáns különbséget, az a V90. A V100, a V150, a D90 és a V200 értékek az LDR tervek esetében voltak magasabbak, míg a V90, a D100, a DHI és a COIN a HDR tervek esetében. A két terv közötti legkisebb különbség a V100 értékére adódott, ami közel azonos lett (98% vs. 97%). Legnagyobb különbség a V150 paraméternél figyelhető meg, ami a HDR terveknél 46%-ot csökkent az LDR tervekhez képest. Összességében elmondható hogy az LDR terveknél jobb referenciadózissal való céltérfogat lefedettséget kaptunk, de a dózishomogenitás, illetve a dóziskonformalitás magasabb értéket mutat a HDR tervek esetében.

Az első védendő szerv, az urethra adatainál, az összes paraméternél szignifikáns különbség volt látható a két terv között. Az LDR tervek jóval magasabb értékeket adtak, mint a HDR terveké. A legnagyobb különbség a Dmax-ra adódott (21%-os különbség), de még a legkisebb különbséget mutató paraméter, a D30 differenciája is 12% volt.

A másik védendő szerv, a rectum esetében is hasonlóan elmondható hogy az összes adatsor esetében szignifikáns volt a különbség a két terv között. Ezesetben is az LDR tervek paraméterei mutattak jóval magasabb értéket. Legnagyobb különbség itt is a Dmax-nál figyelhető meg, ahol közel 25%-os az eltérés.

Tehát az urethra és a rectum dozimetriai elemzéséből kiderül, hogy a HDR kezelésekkel sokkal jobban védhetőek az említett rizikó szervek, mint az LDR kezelésekkel, amennyiben a relatív fizikai dózisokat vesszük figyelembe.

### 6. MEGBESZÉLÉS

#### 6.1. Az intraoperatív és posztimplantációs tervek értékelése

A kiértékelés alapján kijelenthetjük, hogy a permanens implantációs prosztata brachyterápiánál az intraoperatív, és a beavatkozást követően négy héttel kialakult végleges posztimplantációs dóziseloszlások jelentősen különböznek egymástól. Eredményeim szerint a céltérfogat dózislefedettsége, illetve majdnem minden más paraméter értéke szignifikánsan csökken, kivételt képez a V200 (%) és a DHI értékek. Eredményeim teljes mértékben összeegyeztethetők Herein és munkatársai [46] által közölt eredményeikkel, akik szintén ugyanezeket a paramétereket vizsgálták szabad és kötött sugárforrások esetén 30-30 betegre nézve. Diplomamunkámban csak kötött sugárforrásokkal kezelt betegek adatait használtam és nem tértem ki külön a szabad sugárforrással kezelt betegek vizsgálatára.

Moerland és munkatársai [47] eredményei alapján a kötött sugárforrásos technika alkalmazása esetén a D90 paraméter átlagosan 12%-os csökkenést mutatott, ami az én vizsgálataim során átlag 25%-os volt.

Heysek és munkatársai [48] - eredményeimmel összhangban - 113 kötött sugárforrással kezelt beteg intraoperatív és posztimplantációs dozimetriai paramétereinek elemzésénél szintén jelentős csökkentést tapasztaltak a D90 és a V100 értékek esetében. A D90 értékre átlagosan 15%, míg a V100 értékére átlagosan 9% csökkenést tapasztaltak, mely paraméter értékére a saját vizsgálataim során 13% adódott.

Marcu és munkatársai [49] 265 kötött sugárforrással kezelt beteg intraoperatív és posztimplantációs adatait elemezték. A CT-alapú kiértékelés során a D90 értékére 22%-os csökkenés adódott. Emellett megállapították, hogy a CT-alapú posztimplantációs dozimetria során a prosztata ellátottsága alulbecsülhető, mivel a CT-képeken könnyű túlbecsülni és ezzel együtt túlkontúrozni a prosztata méretét. Érdekességként elmondható, hogy a legtöbb, szakirodalomban található cikk csak a CT-alapú posztimplantációs dozimetriával

foglalkozik. Vizsgálataimban azonban a posztimplantációs dozimetria alapját az MR-alapú céltérfogat meghatározás adta.

Katayama és munkatársai [50] vizsgálatai alapján megállapítható, hogy a CT-MR fuzionált képek segítségével végzett posztimplantációs dozimetriával egyenértékű lehet a T2- és T2\*-súlyozású MR vizsgálaton kapott képek által számított dozimetria, mivel a T2\*súlyozású képeken a sugárforrások már jól felismerhetőek. A képfúzió által keltett bizonytalanság ennek a technikának a használatával csökken, mivel a két típusú MR vizsgálat egy fektetésben történik.

Kijelenthető, hogy a nemzetközi irodalommal közel megegyező eredményeket kaptam. A talált különbségek valószínűleg a kutatások közti betegszámok eltéréseiből adódhatnak. Az egyik legfontosabb eredménynek tekinthető - az említett publikációk szerint is – a céltérfogat ellátottságának csökkenése. A jövőben több, adott konkrétumok által kiválasztott beteg bevonásával lehetőség nyílhat a pontosabb dozimetriai értékelésre.

#### 6.2. Az LDR- és a HDR-BT-s tervek értékelése

A kiértékelés alapján kijelenthetjük, hogy mind az LDR, mind a HDR technika hordoz előnyöket és hátrányokat is egyaránt, melyekről adott esetben a betegeket részletesen tájékoztatják. Az orvos javaslatot tesz az ideálisnak vélt terápiára, de a döntés után az esetleges tudományos munkákon kívül már nem fogják vizsgálni hogy milyen különbségek lehetnek az egyes kezelési módszerek között, akár dóziseloszlások, akár sugárbiológiai szempontból, vagy a mellékhatások tekintetében.

A szakirodalomban több tanulmány vizsgálja az LDR és a HDR technika közötti különbségeket, azonban ezek közül a legtöbb a HDR technikát, mint kiegészítő kezelés (boost) alkalmazza a teleterápiás besugárzások mellé.

A HDR terápiáról, mint monoterápiáról kevesebb tanulmány áll rendelkezésre Ezek alapján általánosan elmondható, hogy viszonylag nagy dózist lehet vele kiszolgáltatni a

céltérfogatra, míg a védendő szervek sugárterhelését alacsonyan lehet tartani [51-52]. Kanikowski és munkatársai [53] szerint - a saját vizsgálataimmal ellentétben - ez a technika inhomogénebb dóziseloszlást ad, mint az LDR-BT.

A HDR módszer nagy előnye az LDR technikával szemben, hogy a dóziseloszlás könnyen, többféleképpen módosítható. Az LDR technikánál egy rossz implantációt nehezen, vagy egyáltalán nem lehet kijavítani, mivel az implantáció után dózisoptimalizációra már nincs lehetőség.

Egy régebbi, ám figyelemreméltó cikk - Freeman és munkatársai [54] - szerint olyan, kevésbé differenciált daganatok esetében melyek rendkívül gyorsan osztódnak, egyáltalán nem hatásos a I-125-tel való permanens besugárzás, melynek demonstrálására matematikai modelleket állítottak fel. Withmore és munkatársai [55] is hasonló vizsgálatokat végeztek és ők is arra az eredményre jutottak, hogy általánosan, a gyorsan osztódó daganatok esetében elmondható, hogy a HDR technika jóval hatásosabb, mint az LDR technika.

Szintén előny az LDR technikával szemben hogy a személyzet egyáltalán nem részesül sugárterhelésben az utántöltéses technikának köszönhetően, illetve hogy a HDR technika nem permanens és emiatt a későbbiekben nem okozhatnak problémát az esetleges sugárvédelemi kérdések (pl. a beteg elhalálozása).

Vizsgálataim során megállapítottam, hogy az LDR terveknél minden esetben nagyobb relatív dózist lehetett kiszolgáltatni a céltérfogatra mint a HDR tervek esetében, mindamellett a tervezésnél, a saját tapasztalataim alapján nehezebb volt megvédeni a rizikó szerveket, mint a HDR-es tervezéseknél. Ugyanakkor az LDR-es valós idejű tervezés során módunkban áll a terven minimális mértékben manuálisan módosítani, amit a HDR technikánál nem tudunk megtenni.

Dolgozatomban a prosztatadaganatos betegeket nem osztottam fel alacsony, közepes, illetve magas kockázatú csoportokra, és a HDR terveknél nem vettem figyelembe a kezelés célját (boost, monoterápia). Véleményem szerint érdemes lenne megvizsgálni az ebben a formában bekategorizált tervek közti különbségeket is. Adataim alapján kiderül, hogy egyik terápiás kezelés sem preferálható, mivel mint dolgozatomból is kiderül, az eredményes kezelés és annak helyes megválasztása rengeteg tényezőnek a függvénye. A betegeknek egyéni adottságaik és az onkoterápiás intézmény lehetőségei szerint kell mérlegelni, hogy a felajánlott terápiás lehetőségek közül melyiket választják.

### 7. ÖSSZEFOGLALÁS

Összegzésképp megállapítható, hogy eredményeim megfelelnek a szakirodalmakban foglaltaknak.

Az intraoperatív és posztimplantációs dozimetriák összehasonlításakor azt a fő eredményt kaptam - az előzetes szakirodalmakkal összhangban - hogy négy héttel a beavatkozást követően a céltérfogat ellátottsága csökken, de a dóziseloszlás homogénebb lesz. Dolgozatomban az általam elkészített tervek megfeleltek a protokollbeli előírásoknak, megszorításoknak, további optimalizációra nem volt szükség.

Az LDR-BT és a HDR-BT összehasonlítása hasonló eredményeket hozott. Egyértelműen kitűnik, hogy az LDR-BT jobb céltérfogat ellátottságot ad, míg a HDR-BTval a védendő szervek kisebb sugárterhelését lehet elérni. Fontos megjegyezni, hogy a céltérfogat ellátottsága a HDR tervek esetén is 97% felett volt.

További lényeges megjegyzés, hogy a feltüntetett eredmények és az ezekhez tartozó következtetések csak a relatív fizikai dózisokra vonatkoznak. A sugárbiológiai és más egyéb szempontok szerinti összehasonlítás további vizsgálatokat igényelne, ami diplomamunkámnak nem képezi részét.

A jövőre nézve, a további tanulmányokban mindkét vizsgálat esetében fontosnak tartom a betegek különböző előírások szerinti csoportosítását, hogy ezáltal a brachyterápiás kezelések esetlegesen még hatékonyabbá válhassanak.

### 8. IRODALOMJEGYZÉK

- Balogh É, Angeli I. (2007) A fizikus szerepe a daganatos betegek gyógyításában, Fizikai Szemle, 6: 191.
- Justus J. (1905) Rádiummal gyógyított betegek. Beszámoló. Orvosi Hetilap, 49: 92-7.
- 3. Abbe R. (1906) Radium in surgery. J Am Med Assoc. 47: 103.
- Khan FM. (2003) Brachytherapy. In: Khan FM, The Physics of Radiation Therapy. Lippincott Williams & Wilkins, Philadelphia, PA, USA, 357-400.
- Nickers P, Kunkler I, Scaillet P. (1997) Modern brachytherapy: Current state and future prospects. Review Eur J Cancer, 33: 1747-1751.
- Pötter R, Kirisits C, Fidarova EF, Dimopoulos JCA, Berger D, Tanderup K, Lindegaard JC. (2008) Present status and future of high-precision image guided adaptive brachytherapy for cervix carcinoma. Acta Oncol, 47: 1325-1336.
- Martel MK, Narayana V. (1998) Brachytherapy for the Next Century: Use of Image-Based Treatment Planning. Radiat Res, 150 (Suppl.), S178-S88.
- Vicini FA, Kini VR, Edmundson G, Gustafson GS, Stromberg J, Martinez A. (1999) A comprehensive review of prostate cancer brachytherapy: defining an optimal technique. Int J Radiat Oncol Biol Phys, 44: 483-491.
- Hsu IC, Pickett B, Shinohara K, Krieg R, Roach M 3<sup>rd</sup>, Phillips T. (2000) Normal tissue dosimetric comparison between HDR prostate implant boost and conformal external beam radiotherapy boost: potential for dose escalation. Int J Radiat Oncol Biol Phys, 46(4): 851-858.
- Major T. (2001) A brachyterápia fizikai és dozimetriai alapjai. In: Németh Gy. (szerk.), Sugárterápia. Springer Tudományos Kiadó Kft, Budapest, 37-48.
- Gerbaulet A, et al. (2002) The GEC ESTRO Handbook of Brachytherapy. ESTRO, Brüsszel
- Fröhlich G. (2010) Metszetképalkotó eljárásokon alapuló intersticiális konformális prosztata és emlő brachyterápia dozimetriai elemzése. Doktori értekezés, Semmelweis Egyetem, Budapest

- 13. Schopohl B, Leirmann D, Pohlit LJ, et al. (1996) <sup>192</sup>IR endovascular brachytherapy for avoidance of intimal hyperplasia after percutaneous transluminal angioplasty and stent implantation in peripheral vessels: 6 years of experience. Int J Radiat Oncol Biol Phys, 36: 835-40.
- Nemzeti Rákregiszter. (2006) A daganatos betegségek morbiditási és mortalitási adatai. Országos Onkológiai Intézet, Budapest
- 15. www.ksh.hu
- Kásler M, Ottó Sz. (2008) Európai és hazai kihívások az onkológiában. Magyar Onkológia, 52: 21-33.
- Tompa A. (2011) A daganatos betegségek előfordulása A hazai és a nemzetközi helyzet ismertetése. Magyar Tudomány, http://www.matud.iif.hu/2011/11/06.htm
- 18. Grimm P, et al. (2012) Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU International, 109, Supplement 1, 22-29.
- 19. Khoo VS. (2005) Radiotherapeutic techniques for prostate cancer, dose escalation and brachytherapy. Clin Oncol, 17: 560-571.
- 20. Sathya JR, Davis IR, Julian JA, Guo Q, Daya D, Dayes IS, Lukka HR, Levine M. (2005) Randomized trial comparing Iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol, 23: 1192-1199.
- 21. Vicini FA, Abner A, Baglan KL, Kestin LL, Martinez AA. (2001) Defining a doseresponse relationship with radiotherapy for prostate cancer: is more really better? Int J Radiat Oncol Biol Phys, 51: 1200-1208.
- 22. AAPM Report No. 41. (1993) Remote afterloading technology, AAPM TG 41. American Institute of Physics, Inc., New York
- Ágoston P, Major T, Fröhlich G, et al. (2011) Permanens implantációs prosztatabrachyterápia korai, szervre lokalizált prosztatarák kezelésére. Magyar Onkológia, 55: 170-177.
- 24. Pinkawa M, et al. (2006) Changes of dose delivery distribution within the first month after permanent interstitial brachytherapy for prostate cancer. Strahlenther Onkol, Nr.9

- 25. Moerland A, et al. (2009) Decline of dose coverage between intraoperative planning and post implant dosimetry for I-125 permanent prostate brachytherapy: Comparison between loose and stranded seed implants. Radiotherapy and Oncology, 91: 202-206.
- Hinnen A, et al. (2010) Loose seeds versus stranded seeds in I-125 prostate brachytherapy: Differences in clinical outcome. Radiotherapy and Oncology, 96: 30-33.
- 27. Pinkawa M, et al. (2008) Seed displacements after permanent brachytherapy for prostate cancer independence on the prostate level. Strahlenther Onkol, Nr.10.
- 28. Nath R, et al. (2009) AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: Report of Task Group 137, Med Phys, 36(11).
- 29. Salembier C, Lavagnini P, Nickers P, et al. (2007) Tumour and target volumes in permanent prostate brachytherapy: A supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy. Radiother Oncol, 83: 3-10.
- Drzymala RE, Mohan R, Brewster L, Chu J, Goitein M, Harms W, Urie M. (1991)
  Dose-volume histograms. Int J Radiat Oncol Biol Phys, 21: 71-78.
- 31. Fröhlich G, Ágoston P, Lövey J, et al. (2010) Dosimetric evaluation of high-doserate interstitial brachytherapy boost treatments for localized prostate cancer. Strahlenther Onkol, 186: 388-395.
- 32. Vicini FA, Kestin LL, Edmundson GK, Jaffray DA, Wong JW, Kini VR, Chen PY, Martinez AA. (1999) Dose-volume analysis for quality assurance of interstitial brachytherapy for breast cancer. Int J Radiat Oncol Biol Phys, 45: 803-810.
- 33. Wu A, Ulin K, Sternick ES. (1988) A dose homogenity index for evaluating Ir-192 interstitial breast implants. Med Phys, 15: 104-107.
- 34. Baltas D, Kolotas C, Geramani K, Mould RF, Ioannidis G, Kekchidi M, Zamboglou N. (1998) A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys, 40(2): 515-524.
- 35. Lessard E, Pouliot J. (2001) Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys, 28(5): 773-779.
- 36. Williamson JF, Coursey BM, DeWerd LA, et al. (2000) Recommendations of the American Association of Physicists in Medicine on 103Pd interstitial source

calibration and dosimetry: implications for dose specification and prescription. Med Phys, 27: 634–42.

- Yan Y et al. (1999) Permanent prostate seed implant brachytherapy: report of the AAPM TG 64. Med Phys, 26: 2054–76.
- 38. Nath R, Bice W, Butler W, et al. (2009) AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: report of Task Group 137. Med Phys, 36: 5310-5322.
- 39. Tejwani A, Bieniek E, Puckett L, et al. (2012) Case series analysis of postbrachytherapy prostate edema and its relevance to post-implant dosimetry. Postimplant prostate edema and dosimetry. J Contemp Brachyther, 4: 75-80.
- De Brabandere M, Al-Qaisieh B, De Wever L, et al. (2013) CT-and MRI-based seed localization in postimplant evaluation after prostate brachytherapy. Brachytherapy, 12: 580-588.
- 41. Fröhlich G, Ágoston P, Lövey J, et al. (2010) Dosimetric evaluation of high-doserate interstitial brachytherapy boost treatments for localized prostate cancer. Strahlenther Onkol, 186:388-95.
- 42. Kovács Gy, Pötter R, Loch T, Hammer J, Kolkman-Deurloo IK, de la Rosette JJ, Bertermann H. (2005) GEC/ESTRO-EAU recommendations on temporary brachytherapy using stepping sources for localised prostate cancer. Radiother Oncol, 74: 37-148.
- 43. Shapiro SS, Wilk MB. (1965) Analysis of variance test for normality. Biometrika 52: 591–611.
- 44. Hines GM. (1990) An odd effect: Lengthened reaction times for judgments about odd digits. Memory and Cognition, 18: 40-46.
- 45. Wilcoxon F. (1945) Individual comparisons by ranking methods. Biometrics Bulletin, 1(6): 80–83.
- 46. Herein A, Ágoston P, Szabó Z, Jorgo K, Markgruber B, Pesznyák C, Polgár C, Major T. (2015) Intraoperatív és posztimplantációs dozimetria összehasonlítása permanens implantációs prosztata-brachyterápiával kezelt betegeknél. Magyar Onkologia, 59(2): 148-153.

- 47. Moerland M, van Deursen M, Elias S, et al. (2009) Decline of dose coverage between intraoperative planning and post implant dosymetry for I-125 permanent prostate brachytherapy: Comparison between loose and stranded seed implants. Radiother Oncol, 91: 202-206.
- 48. Heysek R, Gwede C, Torres-Roca J, et al. (2006) A dosimetric analysis of unstranded seeds versus customized stranded seeds in transperineal interstitial permanent prostate seed brachytherapy. Brachytherapy, 5: 244-250.
- 49. Marcu L, Lawson J, Rutten T, et al. (2012) Quality indicators and technique for analyzing permanent I-125 prostate seed implants: Seven years postimplant dosimetry evaluation. Med Phys, 39: 4123-4131.
- 50. Katayama N, Takemoto M, Yoshio K, et al. (2011) T2\*-weighted image/T2weighted image fusion in postimplant dosimetry of prostate brachytherapy. J Radiat Res, 52: 680-684.
- 51. King CR. (2002) LDR vs HDR brachytherapy for localized prostate cancer the view from radiobiological models. Brachytherapy, 1(4), 219–226(8).
- 52. Grills IS, Martinez AA, Hollander M, Huang R, Goldman K, Chen PY, Gustafson GS (2004) High dose rate brachytherapy as prostate cancer monotherapy reduces toxicity compared to low dose rate palladium seeds. J urol, 171(3):1098–104.
- 53. Kanikowski M, Skowronek J, Kubaszewska M, Chicel A, Milecki P. (2008) Permanent implants in treatment of prostate cancer. Rep Pract Oncol Radiother. 13(3): 150–167.
- 54. Freeman ML, Goldhagen P, Sierra E, Hall EJ. (1982) Studies with encapsulated Iodine-125 sources. Int J Radiat Oncol Biol Phys, 8: 1335–1361.
- 55. Whitmore WF. (1986) Interstitial implantation of the prostate: 10 year results, in Hilaris B, Nori D (eds): Brachytherapy Update, Syllabus of the Postgraduate Course Jointly Sponsored by the Brachytherapy Service, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, and the Brachytherapy Oncology Association. New York, Memorial Sloan-Kettering Cancer Center, 67–77.

## KÖSZÖNETNYILVÁNÍTÁS

Köszönettel tartozom mindenkinek, aki hozzájárult a tudományos munkámhoz:

elsősorban témavezetőmnek, Dr. Major Tibornak, akinek hozzáértése és segítsége nélkül ez a dolgozat nem készülhetett volna el,

Dr. Ágoston Péternek és Dr. Jorgo Klitonnak a szakmai együttműködésért,

és konzulensemnek, Dr. Pesznyák Csillának.

Ezen kívül hálával tartozom az Országos Onkológiai Intézet munkatársainak, illetve a brachyterápiás részleg műtősnőinek, hogy támogatták munkámat.

# MELLÉKLETEK





#### **1. melléklet** Intraoperatív és posztimplantációs alapadatok

#### Prosztata kezelések tervezési adatai

Előírt dózis: 145 Gy

| Sorszám | Megjegyzés | Kockázat | Tűszám | Seed<br>szám | Seed szám<br>(4 hét) | Seed aktiv.<br>(mCi) | Összaaktiv.<br>(mCi) | Vref<br>(cm3) | Vp<br>(cm3)<br>Intra | Vp<br>(cm3)<br>Post |
|---------|------------|----------|--------|--------------|----------------------|----------------------|----------------------|---------------|----------------------|---------------------|
| 1       |            | közepes  | 25     | 60           | 60                   | 0,549                | 32,9                 | 68,6          | 48,5                 | 44,8                |
| 2       |            | közepes  | 18     | 40           | 39                   | 0,562                | 22,5                 | 39,9          | 29,1                 | 31                  |
| 3       |            | kis      | 19     | 40           | 40                   | 0,549                | 22                   | 38,8          | 24,1                 | 19                  |
| 4       |            | kis      | 22     | 51           | 51                   | 0,562                | 28,7                 | 57,2          | 39,3                 | 53,8                |
| 5       |            | közepes  | 20     | 43           | 43                   | 0,562                | 24,2                 | 43,9          | 28,6                 | 29,7                |
| 6       |            | kis      | 26     | 60           | 60                   | 0,562                | 33,7                 | 72,2          | 53,7                 | 60,4                |
| 7       |            | közepes  | 21     | 55           | 54                   | 0,562                | 30,9                 | 64,1          | 44,8                 | 52,5                |
| 8       |            | kis      | 18     | 50           | 49                   | 0,562                | 28,1                 | 55,5          | 35,7                 | 38,3                |
| 9       |            | közepes  | 22     | 51           | 51                   | 0,562                | 28,7                 | 57,1          | 38,3                 | 64,9                |
| 10      |            | közepes  | 17     | 41           | 40                   | 0,549                | 22,5                 | 40,5          | 25,1                 | 30,8                |
| 11      | Study 61   | közepes  | 21     | 61           | 61                   | 0,562                | 34,3                 | 73,1          | 51,9                 | 46,4                |
| 12      | Study 58   | közepes  | 19     | 45           | 45                   | 0,562                | 25,3                 | 47,3          | 29,2                 | 24,4                |
| 13      | Study 57   | kis      | 19     | 53           | 53                   | 0,562                | 29,8                 | 59,9          | 40,9                 | 32,1                |
| 14      | Study 55   | kis      | 20     | 46           | 46                   | 0,562                | 25,8                 | 48,6          | 33,8                 | 32,3                |
| 15      | Study 53   | közepes  | 15     | 34           | 34                   | 0,562                | 19,1                 | 31,9          | 21,2                 | 20,2                |

### A prosztata intraoperatív és posztimplantációs paramétereinek értékei

#### Prosztata kezelések tervezési adatai

Előírt dózis: 145 Gy

| Sorszám | Megjegyzés | Kockázat | Vref<br>(cm3) | Vp<br>(cm3)<br>Intra | Vp<br>(cm3)<br>Post | V100<br>(%)<br>Intra | V100<br>(%)<br>Post | V150<br>(%)<br>Intra | V150<br>(%)<br>Post | D90<br>(%)<br>Intra | D90<br>(%)<br>Post | V90<br>(%)<br>Intra | V90<br>(%)<br>Post | V200<br>(%)<br>Intra | V200<br>(%)<br>Post | D100<br>(%)<br>Intra | D100<br>(%)<br>Post | DHI<br>Intra | DHI<br>Post | COIN<br>Intra | COIN<br>Post |
|---------|------------|----------|---------------|----------------------|---------------------|----------------------|---------------------|----------------------|---------------------|---------------------|--------------------|---------------------|--------------------|----------------------|---------------------|----------------------|---------------------|--------------|-------------|---------------|--------------|
| 1       |            | közepes  | 68,6          | 48,5                 | 44,8                | 98,5                 | 89,2                | 62,7                 | 63,3                | 123                 | 97,5               | 99,6                | 92,1               | 18                   | 24,4                | 78                   | 46,7                | 0,36         | 0,29        | 0,69          | 0,52         |
| 2       |            | közepes  | 39,9          | 29,1                 | 31                  | 97,7                 | 88,5                | 48,4                 | 38,2                | 114                 | 97,5               | 99,6                | 94,1               | 16,6                 | 16,2                | 78,8                 | 54                  | 0,5          | 0,57        | 0,7           | 0,61         |
| 3       |            | kis      | 38,8          | 24,1                 | 19                  | 100                  | 96,7                | 65                   | 74,8                | 127                 | 123                | 100                 | 98,7               | 21                   | 35,9                | 87                   | 73,6                | 0,35         | 0,23        | 0,62          | 0,46         |
| 4       |            | kis      | 57,2          | 39,3                 | 53,8                | 98                   | 80,6                | 64                   | 37,5                | 125                 | 80,6               | 100                 | 85,9               | 24                   | 13,5                | 82                   | 41,1                | 0,35         | 0,53        | 0,66          | 0,61         |
| 5       |            | közepes  | 43,9          | 28,6                 | 29,7                | 99,8                 | 88,4                | 64,5                 | 63,6                | 127                 | 95                 | 100                 | 91,7               | 22                   | 30,4                | 91                   | 51                  | 0,35         | 0,28        | 0,65          | 0,53         |
| 6       |            | kis      | 72,2          | 53,7                 | 60,4                | 98,7                 | 86,4                | 51,3                 | 34,7                | 119                 | 91,7               | 99,6                | 90,6               | 18,6                 | 10,6                | 70,5                 | 42,6                | 0,48         | 0,6         | 0,72          | 0,62         |
| 7       |            | közepes  | 64,1          | 44,8                 | 52,5                | 100                  | 85,8                | 52                   | 39,3                | 123                 | 91,5               | 100                 | 90,8               | 17                   | 14,8                | 43                   | 44,3                | 0,48         | 0,54        | 0,7           | 0,60         |
| 8       |            | kis      | 55,5          | 35,7                 | 38,3                | 99                   | 80                  | 58                   | 45,7                | 120                 | 75,8               | 100                 | 84,2               | 21                   | 19,9                | 87                   | 38,5                | 0,41         | 0,43        | 0,63          | 0,44         |
| 9       |            | közepes  | 57,1          | 38,3                 | 64,9                | 99,3                 | 71,3                | 62,6                 | 27,1                | 125,8               | 62,7               | 100                 | 77,4               | 20,8                 | 9,7                 | 90                   | 26                  | 0,37         | 0,62        | 0,66          | 0,58         |
| 10      |            | közepes  | 40,5          | 25,1                 | 30,8                | 99                   | 77,9                | 56                   | 36,6                | 120                 | 74,4               | 100                 | 83,3               | 19                   | 15,7                | 81                   | 38,3                | 0,43         | 0,53        | 0,61          | 0,46         |
| 11      | Study 61   | közepes  | 73,1          | 51,9                 | 46,4                | 99                   | 86,1                | 56                   | 51,9                | 119                 | 89                 | 100                 | 89,7               | 17                   | 22,56               | 82                   | 37,9                | 0,43         | 0,4         | 0,7           | 0,47         |
| 12      | Study 58   | közepes  | 47,3          | 29,2                 | 24,4                | 100                  | 90,4                | 59                   | 55,1                | 124                 | 101,5              | 100                 | 92,7               | 24                   | 24,1                | 92                   | 48,1                | 0,41         | 0,4         | 0,62          | 0,42         |
| 13      | Study 57   | kis      | 59,9          | 40,9                 | 32,1                | 99                   | 78,7                | 60                   | 38,7                | 121                 | 76,7               | 100                 | 84,2               | 19                   | 14                  | 87                   | 41,2                | 0,39         | 0,51        | 0,67          | 0,33         |
| 14      | Study 55   | kis      | 48,6          | 33,8                 | 32,3                | 99                   | 95,1                | 61                   | 60,4                | 121                 | 112,8              | 100                 | 97,4               | 22                   | 26,7                | 89                   | 63,1                | 0,38         | 0,36        | 0,68          | 0,60         |
| 15      | Study 53   | közepes  | 31,9          | 21,2                 | 20,2                | 98                   | 90,3                | 53                   | 51,5                | 118                 | 100,5              | 100                 | 93,9               | 17                   | 24                  | 82                   | 57,8                | 0,46         | 0,43        | 0,64          | 0,52         |

#### Az intraoperatív és posztimplantációs tervek összehasonlítása



1. ábra A céltérfogat V100 (%) értékeinek összehasonlítása



2. ábra A céltérfogat V150 (%) értékeinek összehasonlítása



3. ábra A céltérfogat V200 (%) értékeinek összehasonlítása



4. ábra A céltérfogat D90 (%) értékeinek összehasonlítása



5. ábra A céltérfogat V90 (%) értékeinek összehasonlítása



6. ábra A céltérfogat D100 (%) értékeinek összehasonlítása



7. ábra A céltérfogat DHI értékeinek összehasonlítása



8. ábra A céltérfogat COIN értékeinek összehasonlítása

#### Az LDR és HDR tervek prosztata adatainak összehasonlítása

#### Prosztata kezelések tervezési adatai

Előírt dózis: seed = 145 Gy, HDR=19 Gy vagy 10 Gy; /100 %/

|          |          |            |               |                    | V100          | V100 | V150 | V150 | D90   | D90   | V90  | V90           | V200 | V200 | D100 | D100          |
|----------|----------|------------|---------------|--------------------|---------------|------|------|------|-------|-------|------|---------------|------|------|------|---------------|
| <b>0</b> |          | Maniamuta  |               | \/m (am <b>0</b> ) | (%)           | (%)  | (%)  | (%)  | (%)   | (%)   | (%)  | (%)           | (%)  | (%)  | (%)  | (%)           |
| Sorszam  | Seed/HDR | wegjegyzes | vref (cm3)    | vp (cm3)           | seea          | HUR  | seea | HUR  | seea  | HUR   | seea | HUR           | seea | HUR  | seea | HUR           |
| 1        | seed     | Study 70   | 52,4          | 34,4               | 99            | 97,5 | 60   | 27,9 | 121   | 108,2 | 100  | 99,7          | 27   | 9,8  | 79   | 82,8          |
| 2        | seed     | Study 72   | 62            | 45,6               | 98            | 96,8 | 68   | 26,8 | 119   | 108,7 | 99   | 99 <i>,</i> 4 | 29   | 8,2  | 69   | 81,5          |
| 3        | seed     | Study 73   | 50,9          | 33,7               | 99            | 96,5 | 70,5 | 36,3 | 126,4 | 109,4 | 99,7 | 99            | 31,5 | 11,6 | 77,7 | 75 <i>,</i> 9 |
| 4        | seed     | Study 74   | 55 <i>,</i> 9 | 37,1               | 99            | 97,9 | 68   | 29,2 | 123   | 108,4 | 100  | 99,9          | 31   | 12,1 | 81   | 83,2          |
| 5        | seed     | Study 77   | 34,9          | 21,4               | 98            | 96,7 | 43   | 28,8 | 113   | 107,5 | 100  | 99,8          | 17   | 8,8  | 77   | 86,6          |
| 6        | seed     | Study 79   | 65            | 48,5               | 98,2          | 95,6 | 53   | 25,9 | 115   | 107,9 | 99,6 | 99,9          | 19,1 | 7,2  | 73,7 | 85 <i>,</i> 8 |
| 7        | seed     | Study 84   | 74,7          | 54,5               | 99 <i>,</i> 4 | 98,2 | 58   | 38,2 | 121,2 | 112,3 | 100  | 99 <i>,</i> 9 | 20,2 | 12,3 | 91,6 | 87,4          |
| 8        | seed     | Study 85   | 41,7          | 26,6               | 98 <i>,</i> 6 | 97   | 62   | 34,6 | 125   | 110,7 | 99,5 | 99 <i>,</i> 6 | 26   | 12   | 62   | 77,5          |
| 9        | seed     |            | 57,5          | 40,7               | 99            | 98   | 63   | 31,8 | 124   | 110,7 | 99,8 | 99 <i>,</i> 9 | 26   | 10,1 | 71,1 | 85,8          |
| 10       | seed     |            | 43,8          | 30                 | 99 <i>,</i> 3 | 96,6 | 71,8 | 32   | 125,6 | 108,4 | 99,9 | 99,7          | 32   | 12,1 | 84   | 82            |
| 11       | seed     |            | 62,1          | 42,5               | 98            | 95,6 | 69   | 30,1 | 125   | 106,9 | 100  | 99,1          | 32   | 8,8  | 74   | 82 <i>,</i> 9 |
| 12       | seed     |            | 31,7          | 43                 | 99            | 97,9 | 57   | 28,9 | 123   | 109,9 | 100  | 99,8          | 21   | 9,4  | 83   | 80,8          |
| 13       | seed     |            | 59 <i>,</i> 3 | 44,8               | 98,1          | 98,2 | 53   | 28,3 | 120,7 | 111,7 | 99,5 | 99,6          | 17,8 | 7,4  | 78   | 79            |
| 14       | seed     |            | 35,4          | 25,1               | 97            | 96,9 | 55   | 24,3 | 114   | 108,1 | 99   | 99,7          | 22   | 8,4  | 71   | 82,3          |
| 15       | seed     |            | 49            | 36,5               | 97,3          | 97,7 | 58,6 | 34   | 115,1 | 110,7 | 99,2 | 99,7          | 22,2 | 13   | 75,4 | 78,8          |
| 16       | seed     |            | 32,3          | 21,2               | 98            | 97,5 | 57   | 34,1 | 121   | 106   | 100  | 99,9          | 27   | 14,1 | 74   | 84            |
| 17       | seed     |            | 70,5          | 54,1               | 98            | 98,3 | 57   | 29,5 | 120   | 111,5 | 99   | 99,8          | 22   | 8,4  | 74   | 81,6          |
| 18       | seed     |            | 46,8          | 32,9               | 98 <i>,</i> 4 | 97   | 65,5 | 23,5 | 122,7 | 108,8 | 99,7 | 99,6          | 27,3 | 7,8  | 81,2 | 82            |
| 19       | seed     |            | 46,5          | 33,2               | 99            | 97   | 66   | 31   | 125   | 108,9 | 100  | 99 <i>,</i> 6 | 27   | 9,2  | 73   | 81,4          |
| 20       | seed     |            | 45,8          | 32,7               | 99            | 97,4 | 60   | 27,1 | 123   | 109,4 | 100  | 99 <i>,</i> 6 | 23   | 8,4  | 76   | 78,5          |
| 21       | seed     |            | 48,7          | 33,2               | 99            | 96,7 | 66   | 30,9 | 128   | 108,3 | 100  | 99 <i>,</i> 6 | 29   | 10,7 | 76   | 82,7          |

| 22 | seed |          | 76,1 | 53 <i>,</i> 9 | 98,7 | 96,5 | 62,7          | 27,6           | 121,4 | 107,8 | 99 <i>,</i> 8 | 99 <i>,</i> 3 | 25 <i>,</i> 5 | 8,9  | 83,1 | 81   |
|----|------|----------|------|---------------|------|------|---------------|----------------|-------|-------|---------------|---------------|---------------|------|------|------|
| 23 | seed |          | 71,1 | 54,8          | 98   | 97,8 | 63            | 25 <i>,</i> 88 | 122   | 111,2 | 100           | 99,7          | 24            | 7,5  | 75   | 85,5 |
| 24 | seed |          | 37,7 | 27,2          | 97   | 97   | 63            | 25,45          | 118   | 109,7 | 99            | 99,3          | 27            | 7,5  | 70   | 74,7 |
| 25 | seed |          | 50,5 | 39            | 98   | 97,7 | 56            | 26,75          | 118   | 109,6 | 100           | 99,7          | 22            | 8,1  | 81   | 80,7 |
| 26 | HDR  | Study 65 | 30,8 | 25,4          | 97,9 | 98   | 58,2          | 36             | 122,2 | 111   | 99            | 100           | 21,2          | 11   | 67,1 | 80   |
| 27 | HDR  | Study 66 | 46,7 | 38,6          | 97,6 | 97   | 53 <i>,</i> 3 | 36             | 116   | 111   | 99 <i>,</i> 3 | 99            | 19,6          | 10   | 71,6 | 72   |
| 28 | HDR  | Study 67 | 60,3 | 49            | 98,2 | 98   | 58,3          | 36             | 117   | 112   | 99,1          | 100           | 19,6          | 12   | 86,2 | 83   |
| 29 | HDR  | Study 69 | 49,6 | 40,6          | 98,7 | 97   | 63,7          | 32             | 122,8 | 110   | 99 <i>,</i> 8 | 100           | 26,5          | 10   | 82,6 | 83   |
| 30 | HDR  | Study 71 | 58,1 | 50,8          | 97,8 | 98   | 58,4          | 37             | 116,9 | 113   | 99 <i>,</i> 5 | 100           | 20,4          | 12   | 73,8 | 82   |
| 31 | HDR  | Study 75 | 54,4 | 46,1          | 98,2 | 97,6 | 51,1          | 30,5           | 119,8 | 111   | 99,6          | 99,6          | 18            | 10,5 | 74,9 | 80,5 |
| 32 | HDR  | Study 76 | 78,9 | 68,3          | 98,3 | 97   | 55,2          | 33             | 121,4 | 109   | 99,4          | 100           | 17,8          | 12   | 66,1 | 84   |
| 33 | HDR  | Study 78 | 31   | 27,5          | 97,5 | 97   | 53 <i>,</i> 8 | 37             | 119,3 | 110   | 98 <i>,</i> 8 | 99            | 21,6          | 13   | 56,1 | 81   |
| 34 | HDR  | Study 80 | 51,4 | 43,5          | 98,5 | 97,3 | 60,5          | 35             | 120,9 | 110   | 99,7          | 99,6          | 24            | 9,8  | 78,5 | 81,5 |
| 35 | HDR  | Study 81 | 70,3 | 59,9          | 98,4 | 97,8 | 54,1          | 30,2           | 122,4 | 110,5 | 99,3          | 99,6          | 18,8          | 9,3  | 62   | 76,4 |
| 36 | HDR  | Study 82 | 66,7 | 55,3          | 98,9 | 97,2 | 50,7          | 27,6           | 122,3 | 108,7 | 99,8          | 99,7          | 17,5          | 7,9  | 77,2 | 82,8 |
| 37 | HDR  | Study 83 | 48   | 38,9          | 98,1 | 98   | 58,6          | 40             | 118,9 | 111   | 99,5          | 100           | 20,3          | 15   | 72,8 | 80   |
| 38 | HDR  | 10 Gy    | 51,5 | 42,3          | 98,7 | 98   | 57,4          | 38             | 120,9 | 111   | 99,7          | 100           | 24,3          | 12   | 77,4 | 80   |
| 39 | HDR  | 10 Gy    | 32,2 | 22,6          | 96,2 | 98,9 | 54,3          | 29,9           | 113   | 111,5 | 98 <i>,</i> 4 | 100           | 24            | 10,4 | 60,7 | 77,8 |
| 40 | HDR  | 10 Gy    | 29,8 | 23,5          | 97,5 | 98   | 62,4          | 35             | 121   | 112   | 98,6          | 100           | 25,6          | 11   | 64,2 | 87   |
| 41 | HDR  | 10 Gy    | 30,4 | 24,3          | 96,7 | 97   | 57,1          | 32             | 114,6 | 110   | 99            | 99            | 26,5          | 11   | 65,4 | 79   |
| 42 | HDR  | 10 Gy    | 46,6 | 37,9          | 98,1 | 98   | 64,4          | 39             | 122,7 | 113   | 99,3          | 99            | 23,2          | 12   | 70,8 | 77   |
| 43 | HDR  | 10 Gy    | 30,1 | 22,4          | 97,3 | 96   | 62,1          | 26             | 119,2 | 106,3 | 99,2          | 99,4          | 27,4          | 8,4  | 76,2 | 77,2 |
| 44 | HDR  | 10 Gy    | 32,1 | 27,8          | 97,3 | 97   | 59,5          | 34             | 119,6 | 111   | 98,6          | 99            | 27,4          | 11   | 58,9 | 78   |
| 45 | HDR  | 10 Gy    | 33,7 | 28,4          | 99,2 | 97   | 54,5          | 34             | 121   | 110   | 100           | 99            | 20,6          | 11   | 86,5 | 76   |
| 46 | HDR  | 10 Gy    | 33   | 29,4          | 98,2 | 96   | 56,4          | 37             | 118,2 | 108   | 99,7          | 100           | 22,3          | 13   | 82,4 | 83   |
| 47 | HDR  | 10 Gy    | 30,6 | 29,6          | 97,9 | 97   | 55,9          | 32             | 120,6 | 110   | 99,3          | 100           | 23,3          | 11   | 72,5 | 75   |
| 48 | HDR  | 10 Gy    | 26,3 | 22,9          | 98,7 | 96   | 54,8          | 38             | 121,2 | 107   | 99,7          | 99            | 20,7          | 12   | 78,6 | 72   |
| 49 | HDR  | 10 Gy    | 28,2 | 22,8          | 98,5 | 98   | 50,5          | 38             | 118,9 | 112   | 99,9          | 100           | 20,7          | 13   | 87,3 | 70   |
| 50 | HDR  | 10 Gy    | 51,7 | 43,9          | 97,6 | 96   | 56,7          | 32             | 120,3 | 109   | 99            | 99            | 21,8          | 12   | 66,1 | 70   |

### 4. melléklet folytatása

### Az LDR és HDR tervek prosztata adatainak összehasonlítása

#### Prosztata kezelések tervezési adatai

| Előírt dózi | s: seed = 145 | 5 Gy, HDR=19 ( | Gy vagy | 10 Gy; /10 | 0 %/ |      |
|-------------|---------------|----------------|---------|------------|------|------|
| _           |               |                | DHI     | DHI        | COIN | COIN |
| Sorszám     | seed/HDR      | Megjegyzés     | seed    | HDR        | seed | HDR  |
| 1           | seed          | Study 70       | 0,39    | 0,71       | 0,64 | 0,78 |
| 2           | seed          | Study 72       | 0,31    | 0,72       | 0,71 | 0,75 |
| 3           | seed          | Study 73       | 0,29    | 0,62       | 0,65 | 0,79 |
| 4           | seed          | Study 74       | 0,31    | 0,7        | 0,65 | 0,75 |
| 5           | seed          | Study 77       | 0,56    | 0,71       | 0,6  | 0,74 |
| 6           | seed          | Study 79       | 0,46    | 0,73       | 0,72 | 0,84 |
| 7           | seed          | Study 84       | 0,71    | 0,61       | 0,72 | 0,85 |
| 8           | seed          | Study 85       | 0,37    | 0,64       | 0,62 | 0,79 |
| 9           | seed          |                | 0,36    | 0,68       | 0,69 | 0,78 |
| 10          | seed          |                | 0,28    | 0,67       | 0,68 | 0,77 |
| 11          | seed          |                | 0,3     | 0,69       | 0,66 | 0,77 |
| 12          | seed          |                | 0,42    | 0,7        | 0,73 | 0,82 |
| 13          | seed          |                | 0,46    | 0,71       | 0,73 | 0,82 |
| 14          | seed          |                | 0,43    | 0,75       | 0,68 | 0,76 |
| 15          | seed          |                | 0,4     | 0,65       | 0,71 | 0,76 |
| 16          | seed          |                | 0,42    | 0,65       | 0,63 | 0,63 |
| 17          | seed          |                | 0,42    | 0,7        | 0,74 | 0,8  |
| 18          | seed          |                | 0,33    | 0,76       | 0,68 | 0,73 |
| 19          | seed          |                | 0,33    | 0,68       | 0,7  | 0,75 |
| 20          | seed          |                | 0,39    | 0,72       | 0,7  | 0,78 |
| 21          | seed          |                | 0,33    | 0,68       | 0,67 | 0,79 |
| 22          | seed          |                | 0,36    | 0,71       | 0,69 | 0,81 |
| 23          | seed          |                | 0,36    | 0,74       | 0,74 | 0,8  |
| 24          | seed          |                | 0,35    | 0,74       | 0,68 | 0,79 |
| 25          | seed          |                | 0,43    | 0,73       | 0,73 | 0,79 |
| 26          | HDR           | Study 65       | 0,41    | 0,63       | 0,68 | 0,77 |
| 27          | HDR           | Study 66       | 0,45    | 0,63       | 0,76 | 0,8  |
| 28          | HDR           | Study 67       | 0,41    | 0,63       | 0,73 | 0,77 |
| 29          | HDR           | Study 69       | 0,36    | 0,67       | 0,74 | 0,8  |
| 30          | HDR           | Study 71       | 0,4     | 0,62       | 0,73 | 0,84 |
| 31          | HDR           | Study 75       | 0,48    | 0,69       | 0,73 | 0,81 |
| 32          | HDR           | Study 76       | 0,44    | 0,66       | 0,73 | 0,84 |
| 33          | HDR           | Study 78       | 0,45    | 0,62       | 0,68 | 0,83 |
| 34          | HDR           | Study 80       | 0,39    | 0,64       | 0,74 | 0,8  |
| 35          | HDR           | Study 81       | 0,45    | 0,69       | 0,74 | 0,81 |
| 36          | HDR           | Study 82       | 0,49    | 0,71       | 0,76 | 0,78 |

| 37 | HDR | Study 83 | 0,4  | 0,59 | 0,73 | 0,78 |
|----|-----|----------|------|------|------|------|
| 38 | HDR | 10 Gy    | 0,42 | 0,61 | 0,76 | 0,8  |
| 39 | HDR | 10 Gy    | 0,44 | 0,7  | 0,74 | 0,69 |
| 40 | HDR | 10 Gy    | 0,36 | 0,64 | 0,65 | 0,78 |
| 41 | HDR | 10 Gy    | 0,41 | 0,67 | 0,71 | 0,77 |
| 42 | HDR | 10 Gy    | 0,34 | 0,6  | 0,73 | 0,79 |
| 43 | HDR | 10 Gy    | 0,36 | 0,73 | 0,71 | 0,69 |
| 44 | HDR | 10 Gy    | 0,39 | 0,65 | 0,71 | 0,84 |
| 45 | HDR | 10 Gy    | 0,45 | 0,65 | 0,7  | 0,8  |
| 46 | HDR | 10 Gy    | 0,43 | 0,61 | 0,71 | 0,85 |
| 47 | HDR | 10 Gy    | 0,43 | 0,67 | 0,72 | 0,77 |
| 48 | HDR | 10 Gy    | 0,44 | 0,6  | 0,71 | 0,81 |
| 49 | HDR | 10 Gy    | 0,49 | 0,61 | 0,7  | 0,79 |
| 50 | HDR | 10 Gy    | 0,42 | 0,67 | 0,72 | 0,79 |





1. ábra A céltérfogat V100 (%) értékeinek összehasonlítása



2. ábra A céltérfogat V150 (%) értékeinek összehasonlítása



3. ábra A céltérfogat V90 (%) értékeinek összehasonlítása



4. ábra A céltérfogat V200 (%) értékeinek összehasonlítása



5. ábra A céltérfogat D90 (%) értékeinek összehasonlítása



6. ábra A céltérfogat D100 (%) értékeinek összehasonlítása



7. ábra A céltérfogat DHI értékeinek összehasonlítása



8. ábra A céltérfogat COIN értékeinek összehasonlítása

#### Az LDR és HDR tervek urethra adatai

| Prosztata | kezelések t | tervezési adata | ai -        | Ureth      | ra          |            |             |            |             |            |             |            |                   |
|-----------|-------------|-----------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------------|
|           |             |                 | D10         | D10        | D30         | D30        | D0.01cm3    | D0.01cm3   | Dmax        | Dmax       | D0.1cm3     | D0.1cm3    | Manada            |
| Sorszám   | seed/HDR    | Megjegyzés      | (%)<br>seed | (%)<br>HDR | vurethra<br>(cm3) |
| 1         | seed        | Study 70        | 127         | 115,8      | 120         | 113,6      | 137         | 119,8      | 145,2       | 125,3      | 128         | 116,6      | 1,4               |
| 2         | seed        | Study 72        | 131         | 117        | 122         | 113,8      | 143         | 119,9      | 146,8       | 121,6      | 135         | 118,5      | 1,5               |
| 3         | seed        | Study 73        | 137,1       | 119        | 128,6       | 114,5      | 150,9       | 126,9      | 162,1       | 131,1      | 140,7       | 119,8      | 1,7               |
| 4         | seed        | Study 74        | 134         | 115,9      | 126         | 113        | 143         | 121,6      | 141,3       | 123,7      | 135         | 117,8      | 1,8               |
| 5         | seed        | Study 77        | 122         | 115        | 117         | 111,8      | 139         | 119,4      | 162,2       | 121,5      | 125         | 115,5      | 1,4               |
| 6         | seed        | Study 79        | 127,8       | 112,8      | 123         | 109,7      | 135,6       | 118.8      | 137,4       | 123,2      | 130,8       | 114,3      | 1,7               |
| 7         | seed        | Study 84        | 130         | 117,1      | 124         | 114,7      | 145         | 119,9      | 169,6       | 121,7      | 133,9       | 118,5      | 1,9               |
| 8         | seed        | Study 85        | 140         | 117,5      | 133         | 114,5      | 151         | 119,9      | 161,8       | 122,1      | 141         | 118,4      | 1,5               |
| 9         | seed        |                 | 139         | 118        | 132         | 114,1      | 155,2       | 120        | 164         | 125,9      | 142         | 118,8      | 1,6               |
| 10        | seed        |                 | 136,8       | 115,7      | 126,8       | 111,6      | 148,8       | 123,3      | 153         | 127,2      | 140         | 117,3      | 1,5               |
| 11        | seed        |                 | 142         | 115,9      | 135         | 112,7      | 156,3       | 119,8      | 172         | 123,6      | 144         | 117,4      | 1,6               |
| 12        | seed        |                 | 135         | 116,7      | 131         | 113,7      | 143,9       | 119,9      | 151         | 122,1      | 136         | 118        | 1,6               |
| 13        | seed        |                 | 129,8       | 117,4      | 124,9       | 114,1      | 135,7       | 119,9      | 138,1       | 121,5      | 132         | 118,5      | 1,7               |
| 14        | seed        |                 | 130         | 116,1      | 124         | 113,3      | 150,1       | 119,9      | 186         | 122        | 132         | 117,3      | 1,4               |
| 15        | seed        |                 | 126,3       | 116,7      | 119,8       | 113,7      | 135         | 122,6      | 136         | 125,7      | 127,6       | 118,3      | 1,7               |
| 16        | seed        |                 | 128         | 115,3      | 120         | 109,9      | 135,6       | 133,1      | 138         | 147,4      | 130         | 116,8      | 1,3               |
| 17        | seed        |                 | 128         | 116,1      | 123         | 113,9      | 136,4       | 119,9      | 148         | 121,5      | 133         | 118,3      | 2,2               |
| 18        | seed        |                 | 134         | 117        | 129,2       | 114,3      | 141,4       | 119,9      | 140,2       | 121,8      | 134,9       | 118,2      | 1,6               |
| 19        | seed        |                 | 139         | 114,4      | 133         | 110,3      | 149,4       | 121        | 165         | 124,6      | 141         | 115,3      | 1,4               |
| 20        | seed        |                 | 136         | 115,9      | 131         | 113        | 134,8       | 120,8      | 169         | 123,1      | 139         | 117,4      | 1,6               |
| 21        | seed        |                 | 135         | 115,8      | 130         | 113,4      | 143         | 120        | 143         | 121,7      | 136         | 116,4      | 1,4               |
| 22        | seed        |                 | 135,1       | 117,5      | 128,9       | 114,4      | 146,6       | 122,1      | 148,2       | 121,3      | 139,2       | 119        | 2,1               |

| 23 | seed |          | 139   | 118,4  | 133   | 115,4 | 144,8 | 119,9 | 148            | 121,1 | 141   | 119,06 | 1,68 |
|----|------|----------|-------|--------|-------|-------|-------|-------|----------------|-------|-------|--------|------|
| 24 | seed |          | 149   | 115,93 | 124   | 113,2 | 149   | 120   | 153            | 121,9 | 138   | 117,3  | 2    |
| 25 | seed |          | 132   | 117,1  | 125   | 114,1 | 140,8 | 120   | 140            | 122,2 | 134   | 118,2  | 1,5  |
| 26 | HDR  | Study 65 | 135,3 | 114    | 130   | 110   | 147,4 | 110,1 | 154,4          | 122,6 | 135,9 | 114    | 1,3  |
| 27 | HDR  | Study 66 | 140,9 | 117    | 130,6 | 112   | 159,2 | 120   | 175,8          | 121   | 143   | 118    | 1,5  |
| 28 | HDR  | Study 67 | 125,8 | 113    | 118,6 | 110   | 135,9 | 115   | 143 <i>,</i> 5 | 116,4 | 127,3 | 114    | 2    |
| 29 | HDR  | Study 69 | 134,4 | 118    | 129,7 | 114   | 142,6 | 120   | 147,1          | 120,5 | 135,3 | 119    | 1,7  |
| 30 | HDR  | Study 71 | 130,9 | 118    | 123,9 | 115   | 141,3 | 120   | 143,1          | 121,2 | 133,5 | 119    | 1,7  |
| 31 | HDR  | Study 75 | 135,1 | 118,5  | 126,1 | 115   | 143,7 | 121   | 145,6          | 121,5 | 138,6 | 119    | 1,8  |
| 32 | HDR  | Study 76 | 133,1 | 115    | 127   | 112   | 141,7 | 118   | 140,3          | 118,8 | 135,1 | 116    | 2,5  |
| 33 | HDR  | Study 78 | 129,5 | 118    | 124,5 | 115   | 135,8 | 120   | 140,4          | 121,9 | 131,5 | 119    | 1,5  |
| 34 | HDR  | Study 80 | 134,4 | 113,9  | 128   | 110,6 | 143,7 | 115,9 | 150,7          | 116   | 135,7 | 114,8  | 1,8  |
| 35 | HDR  | Study 81 | 135,4 | 118,4  | 128,8 | 115,5 | 148,1 | 120,8 | 154,1          | 122,4 | 139,5 | 119,3  | 2    |
| 36 | HDR  | Study 82 | 133,1 | 114,4  | 126,7 | 111,5 | 143,4 | 116   | 153,4          | 94,15 | 135,5 | 115,3  | 2,2  |
| 37 | HDR  | Study 83 | 133   | 119    | 125,8 | 115   | 142,9 | 120   | 145,9          | 121,3 | 134,3 | 119    | 1,4  |
| 38 | HDR  | 10 Gy    | 135,4 | 119    | 129,5 | 116,4 | 159,6 | 123,4 | 181,6          | 129   | 140,5 | 120    | 2    |
| 39 | HDR  | 10 Gy    | 137,6 | 116,3  | 131,8 | 113,6 | 148,1 | 119,8 | 154,1          | 120,5 | 138,9 | 117,5  | 1,2  |
| 40 | HDR  | 10 Gy    | 140,6 | 118    | 134   | 114,7 | 143,9 | 120   | 147,4          | 122   | 140,9 | 119    | 1,1  |
| 41 | HDR  | 10 Gy    | 138,9 | 118    | 131,2 | 112,1 | 157,1 | 121,9 | 202            | 126   | 141,4 | 119    | 1,5  |
| 42 | HDR  | 10 Gy    | 137,9 | 118    | 130,5 | 113,9 | 150,9 | 120,9 | 155,6          | 124   | 141   | 119    | 1,5  |
| 43 | HDR  | 10 Gy    | 148,2 | 111,7  | 137,4 | 109,2 | 174,2 | 115,7 | 200,1          | 116   | 151,1 | 112,7  | 1,4  |
| 44 | HDR  | 10 Gy    | 143,6 | 119    | 135,8 | 114   | 163,7 | 121   | 180,3          | 124   | 147,3 | 119    | 1,5  |
| 45 | HDR  | 10 Gy    | 137   | 118    | 131   | 113,6 | 157,4 | 119,8 | 190,9          | 121   | 140,7 | 119    | 1,5  |
| 46 | HDR  | 10 Gy    | 135,6 | 119    | 129,9 | 114,2 | 143,5 | 122,8 | 147,1          | 126   | 136,5 | 119    | 1,3  |
| 47 | HDR  | 10 Gy    | 134   | 119    | 129,4 | 114,6 | 139,7 | 121,4 | 149,2          | 124   | 134,4 | 119    | 1,2  |
| 48 | HDR  | 10 Gy    | 138,2 | 118    | 130,4 | 111,6 | 149,4 | 119,9 | 153,8          | 122   | 139,9 | 118    | 1,3  |
| 49 | HDR  | 10 Gy    | 133,5 | 118    | 127,2 | 115,6 | 141,8 | 119,9 | 149,7          | 121   | 133,7 | 119    | 1,1  |
| 50 | HDR  | 10 Gy    | 135,1 | 119    | 130,4 | 115   | 147,1 | 123,4 | 151            | 129   | 136,8 | 119    | 1,8  |



#### Az LDR és HDR tervek urethra adatainak összehasonlítása

1. ábra Az urethra D10 (%) értékeinek összehasonlítása



2. ábra Az urethra D30 (%) értékeinek összehasonlítása



3. ábra Az urethra D0,01 cm<sup>3</sup> (%) értékeinek összehasonlítása



4. ábra Az urethra D0,1 cm3 (%) értékeinek összehasonlítása



5. ábra Az urethra Dmax (%) értékeinek összehasonlítása

### Az LDR és HDR tervek rectum adatai

| Def magnet      Def magnet <thdef magnet<="" th="">      Def magnet      Def magn</thdef> | Prosztata keze | elések tervezé | si adatai -   |             | Rectun        | า           |            |             |            |             |               |             |               |             |            |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|-------------|---------------|-------------|------------|-------------|------------|-------------|---------------|-------------|---------------|-------------|------------|----------|
| Sorszám      seed/HDR      Wegjegyzés      seed      HDR      seed <th></th> <th></th> <th></th> <th>D2cm3</th> <th>D2cm3</th> <th>D0.1cm3</th> <th>D0.1cm3</th> <th>D0.01cm3</th> <th>D0.01cm3</th> <th>Dmax</th> <th>Dmax</th> <th>D1cm3</th> <th>D1cm3</th> <th>D10</th> <th>D10</th> <th>Vroature</th>                                            |                |                |               | D2cm3       | D2cm3         | D0.1cm3     | D0.1cm3    | D0.01cm3    | D0.01cm3   | Dmax        | Dmax          | D1cm3       | D1cm3         | D10         | D10        | Vroature |
| 1      seed      Study 70      75,0      65,1      112,0      85,5      135,0      90,3      150,0      90,4      87,0      73,2      93,0      77,0      6,4        2      seed      Study 72      67,0      60,5      98,0      79,5      104,0      83,7      107,2      86,2      82,0      69,7      90,0      74,5      4,9        3      seed      Study 74      73,0      62,7      95,0      81,8      86,0      86,4      105,1      87,4      79,5      70,2      86,0      75,0      5,2        4      seed      Study 77      75,0      62,5      119,0      82,4      129,0      87,2      134,4      88,4      93,0      69,7      99,0      72,5      6,9        5      seed      Study 77      75,0      64,1      160,8      87,9      124,1      88,4      93,0      69,7      99,0      72,5      6,9        6      seed      Study 84      70,2      64,7      98,6      82,6      110,5      86,9      1                                                                                                                                                                                                                                                                                            | Sorszám        | seed/HDR       | Megiegyzés    | (%)<br>seed | (%)<br>HDR    | (%)<br>seed | (%)<br>HDR | (%)<br>seed | (%)<br>HDR | (%)<br>seed | (%)<br>HDR    | (%)<br>seed | (%)<br>HDR    | (%)<br>seed | (%)<br>HDR | (cm3)    |
| 2    seed    Study 72    67,0    60,7    98,0    79,5    104,0    83,7    107,2    86,2    82,0    69,7    90,0    74,5    4,9      3    seed    Study 73    70,0    62,7    95,0    81,8    86,0    86,4    105,1    87,4    79,5    70,2    86,0    75,0    5,2      4    seed    Study 77    75,0    64,1    116,0    85,3    152,0    90,8    219,5    95,1    116,0    72,8    89,0    79,0    4,5    6,9      5    seed    Study 79    113,0    64,6    160,8    79,4    123,6    83,3    128,2    82,7    89,1    71,9    86,6    75,6    5,9      6    seed    Study 79    113,0    64,6    160,8    79,4    123,6    83,3    128,2    82,7    89,1    71,9    86,6    75,6    5,9      8    seed    Study 84    70,2    64,7    98,6    82,6    110,5    86,9    124,1    86,9    81,0    71,9    86,6    75,                                                                                                                                                                                                                                                                                                                                                                                                    | 1              | seed           | Study 70      | 75.0        | 65.1          | 112.0       | 85.5       | 135.0       | 90.3       | 150.0       | 90.4          | 87.0        | 73.2          | 93.0        | 77.0       | 6.4      |
| 3    seed    Study 73    70,0    62,7    95,0    81,8    86,0    86,4    105,1    87,4    79,5    70,2    86,0    75,0    5,2      4    seed    Study 74    79,0    62,5    119,0    82,4    129,0    87,2    134,4    88,4    93,0    69,7    99,0    72,5    69,9      5    seed    Study 77    75,0    64,1    116,0    85,3    152,0    90,8    219,5    95,1    116,0    72,8    98,0    79,0    4,5      6    seed    Study 79    113,0    64,6    160,8    79,4    123,6    83,3    128,2    82,7    89,1    70,8    89,8    71,1    9,6      7    seed    Study 84    70,2    64,7    98,6    82,6    110,5    86,9    124,1    86,9    81,0    71,9    86,6    75,6    5,2      9    seed    Study 85    77,5    51,0    85,0    75,0    94,0    79,6    95,4    81,0    70,0    62,7    71,0    73,7    6,6<                                                                                                                                                                                                                                                                                                                                                                                                    | 2              | seed           | Study 72      | 67.0        | 60.5          | 98.0        | 79.5       | 104.0       | 83.7       | 107.2       | 86.2          | 82.0        | 69.7          | 90.0        | 74.5       | 4.9      |
| 4    seed    Study 74    79,0    62,5    119,0    82,4    129,0    87,2    134,4    88,4    93,0    69,7    99,0    72,5    6,9      5    seed    Study 77    75,0    64,1    116,0    85,3    152,0    90,8    219,5    95,1    116,0    72,8    98,0    79,0    4,5      6    seed    Study 79    113,0    64,6    160,8    79,4    123,6    83,3    128,2    82,7    89,1    70,8    89,8    71,1    9,6      7    seed    Study 84    70,2    64,7    98,6    82,6    110,5    86,9    124,1    86,9    81,0    71,9    86,6    75,6    5,9      8    seed    Study 85    77,5    51,0    85,0    75,0    94,0    79,6    95,4    81,0    64,0    59,5    71,0    65,6    5,2      9    seed    64,1    63,5    87,0    82,3    94,8    87,3    93,0    89,5    74,4    110,0    80,6    4,2    11    seed                                                                                                                                                                                                                                                                                                                                                                                                            | 3              | seed           | Study 73      | 70.0        | 62.7          | 95.0        | 81.8       | 86.0        | 86.4       | 105.1       | 87.4          | 79.5        | 70.2          | 86.0        | 75.0       | 5.2      |
| 5    seed    Study 77    75,0    64,1    116,0    85,3    152,0    90,8    219,7    95,1    116,0    72,8    89,0    70,9    4,5      6    seed    Study 79    113,0    64,6    160,8    79,4    123,6    83,3    128,2    82,7    89,1    70,8    89,8    71,1    9,6      7    seed    Study 84    70,2    64,7    98,6    82,6    110,5    86,9    124,1    86,9    81,0    71,9    86,6    75,6    5,9      8    seed    Study 85    77,5    51,0    85,0    75,0    94,0    79,6    95,4    81,0    64,0    59,5    71,0    65,6    5,2      9    seed    64,1    63,5    87,0    82,3    94,8    87,3    93,0    89,0    72,9    70,6    77,0    73,7    6,6      10    seed    78,0    65,5    130,3    86,0    158,5    90,5    184,8    90,8    95,6    74,4    110,0    80,6    4,2    11    seed                                                                                                                                                                                                                                                                                                                                                                                                               | 4              | seed           | Study 74      | 79.0        | 62.5          | 119.0       | 82.4       | 129.0       | 87.2       | 134.4       | 88.4          | 93.0        | 69.7          | 99.0        | 72.5       | 6.9      |
| 6    seed    Study 79    113,0    64,6    160,8    79,4    123,6    83,3    128,2    82,7    89,1    70,8    89,8    71,1    9,6      7    seed    Study 84    70,2    64,7    98,6    82,6    110,5    86,9    124,1    86,9    81,0    71,9    86,6    75,6    5,9      8    seed    Study 85    77,5    51,0    85,0    75,0    94,0    79,6    95,4    81,0    64,0    59,5    71,0    65,6    5,2      9    seed    64,1    63,5    87,0    82,3    94,8    87,3    93,0    89,0    72,9    70,6    77,0    73,7    6,6      10    seed    78,0    65,5    130,3    86,0    158,5    90,5    184,8    90,8    95,6    74,4    110,0    80,6    4,2      11    seed    69,0    63,9    93,0    82,5    95,8    87,0    97,0    86,4    77,8    70,9    80,0    72,5    8,1      12    seed    60,                                                                                                                                                                                                                                                                                                                                                                                                                     | 5              | seed           | Study 77      | 75.0        | 64.1          | 116.0       | 85.3       | 152.0       | 90.8       | 219.5       | 95.1          | 116.0       | 72.8          | 98.0        | 79.0       | 4.5      |
| 7    seed    Study 84    70,2    64,7    98,6    82,6    110,5    86,9    124,1    86,9    81,0    71,9    86,6    75,6    5,9      8    seed    Study 85    77,5    51,0    85,0    75,0    94,0    79,6    95,4    81,0    64,0    59,5    71,0    65,6    5,2      9    seed    64,1    63,5    87,0    82,3    94,8    87,3    93,0    89,0    72,9    70,6    77,0    73,7    6,6      10    seed    78,0    65,5    130,3    86,0    158,5    90,5    184,8    90,8    95,6    74,4    110,0    80,6    4,2      11    seed    85,5    67,7    111,8    81,0    119,9    83,7    127,0    83,8    95,3    73,2    97,0    74,3    84,4      12    seed    60,7    56,7    93,0    82,3    102,6    83,7    106,0    85,8    71,3    64,8    78,0    69,9    5,8      13    seed    60,7    62,1                                                                                                                                                                                                                                                                                                                                                                                                                     | 6              | seed           | Study 79      | 113,0       | 64,6          | 160,8       | 79,4       | 123,6       | 83,3       | 128,2       | 82,7          | 89,1        | 70,8          | 89,8        | 71,1       | 9,6      |
| 8    seed    Study 85    77,5    51,0    85,0    75,0    94,0    79,6    95,4    81,0    64,0    59,5    71,0    65,6    5,2      9    seed    64,1    63,5    87,0    82,3    94,8    87,3    93,0    89,0    72,9    70,6    77,0    73,7    6,6      10    seed    78,0    65,5    130,3    86,0    158,5    90,5    184,8    90,8    95,6    74,4    110,0    80,6    4,2      11    seed    85,5    67,7    111,8    81,0    119,9    83,7    127,0    83,8    95,3    73,2    97,0    74,3    84,4      12    seed    69,0    63,9    93,0    82,5    95,8    87,0    97,0    86,4    77,8    70,9    80,0    72,5    81,1      13    seed    60,7    56,7    93,0    79,4    102,6    83,7    106,0    85,8    71,3    64,8    78,0    69,9    5,5    7,7    4,8      14    seed    60,7                                                                                                                                                                                                                                                                                                                                                                                                                           | 7              | seed           | ,<br>Study 84 | 70,2        | 64,7          | 98,6        | 82,6       | 110,5       | 86,9       | 124,1       | 86,9          | 81,0        | 71,9          | 86,6        | 75,6       | 5,9      |
| 9    seed    64,1    63,5    87,0    82,3    94,8    87,3    93,0    89,0    72,9    70,6    77,0    73,7    6,6      10    seed    78,0    65,5    130,3    86,0    158,5    90,5    184,8    90,8    95,6    74,4    110,0    80,6    4,2      11    seed    85,5    67,7    111,8    81,0    119,9    83,7    127,0    83,8    95,3    73,2    97,0    74,3    8,4      12    seed    69,0    63,9    93,0    82,5    95,8    87,0    97,0    86,4    77,8    70,9    80,0    72,5    8,1      13    seed    60,7    56,7    93,0    79,4    102,6    83,7    106,0    85,8    71,3    64,8    78,0    69,9    5,8      14    seed    60,7    62,1    93,0    82,3    102,3    86,9    105,7    86,9    74,2    70,6    82,0    75,7    4,8      15    seed    60,7    62,1    93,0    82,3                                                                                                                                                                                                                                                                                                                                                                                                                            | 8              | seed           | ,<br>Study 85 | 77,5        | 51,0          | 85,0        | 75,0       | 94,0        | 79,6       | 95,4        | 81,0          | 64,0        | 59,5          | 71,0        | 65,6       | 5,2      |
| 10seed78,065,5130,386,0158,590,5184,890,895,674,4110,080,64,211seed85,567,7111,881,0119,983,7127,083,895,373,297,074,38,412seed69,063,993,082,595,887,097,086,477,870,980,072,58,113seed53,056,075,976,380,182,182,682,860,762,861,463,59,214seed60,756,793,079,4102,683,7106,085,871,364,878,069,95,815seed60,762,193,082,3102,386,9105,786,974,270,682,075,74,816seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed74,861,3135,282,587,486,9252,086,767,269,8102,074,06,22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9              | seed           | •             | 64,1        | 63,5          | 87,0        | 82,3       | 94,8        | 87,3       | 93,0        | 89,0          | 72,9        | 70,6          | 77,0        | 73,7       | 6,6      |
| 11seed85,567,7111,881,0119,983,7127,083,895,373,297,074,384,412seed69,063,993,082,595,887,097,086,477,870,980,072,58,113seed53,056,075,976,380,182,182,682,860,762,861,463,59,214seed60,756,793,079,4102,683,7106,085,871,364,878,069,95,815seed60,762,193,082,3102,386,9105,786,974,270,682,075,74,816seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,06,221 </th <th>10</th> <th>seed</th> <th></th> <th>78,0</th> <th>65,5</th> <th>130,3</th> <th>86,0</th> <th>158,5</th> <th>90,5</th> <th>184,8</th> <th>90,8</th> <th>95,6</th> <th>74,4</th> <th>110,0</th> <th>80,6</th> <th>4,2</th>                                                                                                                                                                                                                                                                                                                                                                            | 10             | seed           |               | 78,0        | 65,5          | 130,3       | 86,0       | 158,5       | 90,5       | 184,8       | 90,8          | 95,6        | 74,4          | 110,0       | 80,6       | 4,2      |
| 12seed69,063,993,082,595,887,097,086,477,870,980,072,58,113seed53,056,075,976,380,182,182,682,860,762,861,463,59,214seed60,756,793,079,4102,683,7106,085,871,364,878,069,95,815seed60,762,193,082,3102,386,9105,786,974,270,682,075,74,816seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,062,221seed80,064,392,483,3125,887,6129,089,192,471,395,072,883,3 <th>11</th> <th>seed</th> <th></th> <th>85,5</th> <th>67,7</th> <th>111,8</th> <th>81,0</th> <th>119,9</th> <th>83,7</th> <th>127,0</th> <th>83,8</th> <th>95,3</th> <th>73,2</th> <th>97,0</th> <th>74,3</th> <th>8,4</th>                                                                                                                                                                                                                                                                                                                                                                                    | 11             | seed           |               | 85,5        | 67,7          | 111,8       | 81,0       | 119,9       | 83,7       | 127,0       | 83,8          | 95,3        | 73,2          | 97,0        | 74,3       | 8,4      |
| 13seed53,056,075,976,380,182,182,682,860,762,861,463,59,214seed60,756,793,079,4102,683,7106,085,871,364,878,069,95,815seed60,762,193,082,3102,386,9105,786,974,270,682,075,74,816seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,06,221seed80.064.392.483.3125.887,6129.089.192.471.395.072.883.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12             | seed           |               | 69,0        | 63,9          | 93,0        | 82,5       | 95,8        | 87,0       | 97,0        | 86,4          | 77,8        | 70,9          | 80,0        | 72,5       | 8,1      |
| 14seed60,756,793,079,4102,683,7106,085,871,364,878,069,95,815seed60,762,193,082,3102,386,9105,786,974,270,682,075,74,816seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,06,221seed80,064,392,483,3125,887,6129,089,192,471,395,072,883,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13             | seed           |               | 53,0        | 56,0          | 75,9        | 76,3       | 80,1        | 82,1       | 82,6        | 82,8          | 60,7        | 62,8          | 61,4        | 63,5       | 9,2      |
| 15seed60,762,193,082,3102,386,9105,786,974,270,682,075,74,816seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,062,221seed80.064.392.483.3125.887.6129.089.192.471.395.072.883.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14             | seed           |               | 60,7        | 56,7          | 93,0        | 79,4       | 102,6       | 83,7       | 106,0       | 85,8          | 71,3        | 64,8          | 78,0        | 69,9       | 5,8      |
| 16seed62,358,572,083,2122,689,4146,092,080,769,394,077,03,917seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,06,221seed80.064.392.483.3125.887.6129.089.192.471.395.072.883.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15             | seed           |               | 60,7        | 62,1          | 93,0        | 82,3       | 102,3       | 86,9       | 105,7       | 86 <i>,</i> 9 | 74,2        | 70,6          | 82,0        | 75,7       | 4,8      |
| 17seed63,862,585,778,791,383,192,083,972,168,991,071,76,418seed68,360,3108,382,8123,488,7137,990,980,768,188,772,75,919seed45,550,069,069,574,875,074,076,353,956,959,061,15,720seed74,861,3135,282,587,486,9252,086,767,269,8102,074,06,221seed80.064.392.483.3125.887.6129.089.192.471.395.072.883.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16             | seed           |               | 62,3        | 58,5          | 72,0        | 83,2       | 122,6       | 89,4       | 146,0       | 92,0          | 80,7        | 69 <i>,</i> 3 | 94,0        | 77,0       | 3,9      |
| 18    seed    68,3    60,3    108,3    82,8    123,4    88,7    137,9    90,9    80,7    68,1    88,7    72,7    5,9      19    seed    45,5    50,0    69,0    69,5    74,8    75,0    74,0    76,3    53,9    56,9    59,0    61,1    5,7      20    seed    74,8    61,3    135,2    82,5    87,4    86,9    252,0    86,7    67,2    69,8    102,0    74,0    6,2      21    seed    80,0    64,3    92,4    83,3    125,8    87,6    129,0    89,1    92,4    71,3    95,0    72,8    83,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17             | seed           |               | 63,8        | 62,5          | 85,7        | 78,7       | 91,3        | 83,1       | 92,0        | 83,9          | 72,1        | 68,9          | 91,0        | 71,7       | 6,4      |
| 19    seed    45,5    50,0    69,0    69,5    74,8    75,0    74,0    76,3    53,9    56,9    59,0    61,1    5,7      20    seed    74,8    61,3    135,2    82,5    87,4    86,9    252,0    86,7    67,2    69,8    102,0    74,0    6,2      21    seed    80.0    64.3    92.4    83.3    125.8    87.6    129.0    89.1    92.4    71.3    95.0    72.8    83.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18             | seed           |               | 68,3        | 60,3          | 108,3       | 82,8       | 123,4       | 88,7       | 137,9       | 90,9          | 80,7        | 68,1          | 88,7        | 72,7       | 5,9      |
| 20    seed    74,8    61,3    135,2    82,5    87,4    86,9    252,0    86,7    67,2    69,8    102,0    74,0    6,2      21    seed    80.0    64.3    92.4    83.3    125.8    87.6    129.0    89.1    92.4    71.3    95.0    72.8    83.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19             | seed           |               | 45,5        | 50 <i>,</i> 0 | 69,0        | 69,5       | 74,8        | 75,0       | 74,0        | 76,3          | 53,9        | 56,9          | 59,0        | 61,1       | 5,7      |
| <b>21</b> seed 80.0 64.3 92.4 83.3 125.8 87.6 129.0 89.1 92.4 71.3 95.0 72.8 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20             | seed           |               | 74,8        | 61,3          | 135,2       | 82,5       | 87,4        | 86,9       | 252,0       | 86,7          | 67,2        | 69,8          | 102,0       | 74,0       | 6,2      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21             | seed           |               | 80,0        | 64,3          | 92,4        | 83,3       | 125,8       | 87,6       | 129,0       | 89,1          | 92,4        | 71,3          | 95,0        | 72,8       | 8,3      |

| 22 | seed |          | 83,2          | 67,6          | 110,2         | 81,4          | 118,5         | 83,9 | 118,9 | 88,4          | 92,9          | 73,2 | 95,3  | 74,5          | 7,9 |
|----|------|----------|---------------|---------------|---------------|---------------|---------------|------|-------|---------------|---------------|------|-------|---------------|-----|
| 23 | seed |          | 65,2          | 61,9          | 91,0          | 78,4          | 96,4          | 82,0 | 98,0  | 81,1          | 74,2          | 68,1 | 76,0  | 69,5          | 8,4 |
| 24 | seed |          | 60,0          | 47,9          | 100,0         | 73,3          | 110,3         | 79,1 | 120,0 | 80,3          | 77,8          | 57,2 | 111,0 | 63,2          | 5,1 |
| 25 | seed |          | 58,6          | 56,2          | 95 <i>,</i> 5 | 79,5          | 111,1         | 86,6 | 118,0 | 88,8          | 70,3          | 64,1 | 79,0  | 70,0          | 5,0 |
| 26 | HDR  | Study 65 | 46,9          | 48,0          | 77,7          | 68,0          | 86,4          | 74,0 | 88,1  | 79,6          | 58,5          | 56,0 | 65,2  | 61,0          | 4,9 |
| 27 | HDR  | Study 66 | 56,2          | 55,0          | 79,1          | 73,0          | 86,6          | 77,0 | 85,5  | 83,5          | 64,7          | 61,0 | 67,2  | 63,0          | 8,0 |
| 28 | HDR  | Study 67 | 52,2          | 56 <i>,</i> 0 | 77,2          | 74,0          | 85,2          | 79,0 | 85,8  | 79,6          | 60,8          | 63,0 | 64,8  | 65 <i>,</i> 0 | 7,2 |
| 29 | HDR  | Study 69 | 50,9          | 56 <i>,</i> 0 | 77,7          | 79 <i>,</i> 0 | 86,4          | 84,0 | 90,3  | 83,3          | 60,6          | 65,0 | 66,5  | 69,0          | 5,8 |
| 30 | HDR  | Study 71 | 60,5          | 60,0          | 88,8          | 80,0          | 95,4          | 84,0 | 96,6  | 85,1          | 70,4          | 68,0 | 76,8  | 73,0          | 5,1 |
| 31 | HDR  | Study 75 | 72,4          | 54,0          | 114,5         | 72,8          | 135,3         | 77,9 | 154,1 | 79 <i>,</i> 6 | 85,2          | 60,4 | 89,2  | 61,9          | 8,4 |
| 32 | HDR  | Study 76 | 69 <i>,</i> 3 | 66,0          | 90,2          | 82,0          | 99,2          | 87,0 | 103,5 | 88,4          | 76,9          | 72,0 | 78,3  | 74,0          | 8,1 |
| 33 | HDR  | Study 78 | 57 <i>,</i> 8 | 59 <i>,</i> 0 | 89,2          | 82,0          | 96,7          | 87,0 | 100,4 | 89 <i>,</i> 0 | 69 <i>,</i> 6 | 68,0 | 76,2  | 72,0          | 6,0 |
| 34 | HDR  | Study 80 | 53 <i>,</i> 9 | 56 <i>,</i> 0 | 78,8          | 77,7          | 86,8          | 82,9 | 89,7  | 85,5          | 62,5          | 63,9 | 68,2  | 68,6          | 5,7 |
| 35 | HDR  | Study 81 | 71,8          | 59 <i>,</i> 4 | 93,0          | 71,6          | 99,9          | 75,4 | 100,0 | 74,7          | 79,3          | 64,0 | 78,4  | 64,2          | 9,8 |
| 36 | HDR  | Study 82 | 67,7          | 64,2          | 94,4          | 81,4          | 102,5         | 84,1 | 105,5 | 68,6          | 77,5          | 70,7 | 80,1  | 71,8          | 8,6 |
| 37 | HDR  | Study 83 | 49,2          | 55,0          | 71,4          | 76,0          | 78,9          | 82,0 | 77,2  | 83,2          | 57,2          | 62,0 | 61,4  | 65,0          | 6,6 |
| 38 | HDR  | 10 Gy    | 57,1          | 59 <i>,</i> 0 | 85,7          | 80,0          | 94,3          | 86,3 | 95,5  | 87,0          | 66,6          | 67,0 | 70,4  | 69,0          | 7,1 |
| 39 | HDR  | 10 Gy    | 31,8          | 42,5          | 57 <i>,</i> 8 | 60,4          | 63,9          | 63,9 | 67,4  | 64,8          | 40,9          | 49,0 | 47,8  | 52,3          | 4,8 |
| 40 | HDR  | 10 Gy    | 49,3          | 47,0          | 95 <i>,</i> 8 | 71,0          | 110,6         | 77,8 | 116,9 | 79,0          | 63,8          | 56,0 | 73,8  | 59 <i>,</i> 0 | 5,6 |
| 41 | HDR  | 10 Gy    | 57,5          | 55,0          | 98,9          | 78,0          | 110,2         | 82,5 | 113,9 | 83,0          | 70,7          | 63,0 | 74,5  | 65 <i>,</i> 0 | 8,0 |
| 42 | HDR  | 10 Gy    | 60,4          | 57,0          | 86 <i>,</i> 5 | 77,0          | 94,5          | 79,1 | 94,3  | 80,0          | 69,5          | 64,0 | 72,6  | 66,0          | 7,4 |
| 43 | HDR  | 10 Gy    | 43,2          | 52,0          | 73,6          | 72,2          | 85 <i>,</i> 8 | 76,9 | 93,5  | 78 <i>,</i> 0 | 53,3          | 60,0 | 59,6  | 63 <i>,</i> 6 | 5,8 |
| 44 | HDR  | 10 Gy    | 46,2          | 54,0          | 83,9          | 78 <i>,</i> 0 | 94,9          | 81,5 | 100,2 | 83 <i>,</i> 0 | 59,2          | 63,0 | 69,5  | 68,0          | 4,5 |
| 45 | HDR  | 10 Gy    | 41,4          | 49,0          | 70,7          | 74,0          | 78,8          | 78,2 | 80,2  | 79 <i>,</i> 0 | 52,3          | 57,0 | 60,6  | 64,0          | 4,5 |
| 46 | HDR  | 10 Gy    | 65,7          | 57,0          | 100,4         | 78 <i>,</i> 0 | 113,2         | 79,3 | 123,6 | 79 <i>,</i> 0 | 77,4          | 65,0 | 82,0  | 69,0          | 7,2 |
| 47 | HDR  | 10 Gy    | 59,9          | 55 <i>,</i> 0 | 92,8          | 78,0          | 102,3         | 81,6 | 105,5 | 81,0          | 71,4          | 64,0 | 77,9  | 66,0          | 6,1 |
| 48 | HDR  | 10 Gy    | 50,5          | 52,0          | 79,6          | 79 <i>,</i> 0 | 87,5          | 87,9 | 91,9  | 92,0          | 60,9          | 61,0 | 65,9  | 66,0          | 6,5 |
| 49 | HDR  | 10 Gy    | 46,7          | 49,0          | 70,8          | 72,0          | 78,9          | 75,5 | 80,2  | 79 <i>,</i> 0 | 52,3          | 57,0 | 58,3  | 60,0          | 5,6 |
| 50 | HDR  | 10 Gy    | 62,6          | 62,0          | 87,0          | 79,0          | 94,9          | 96,8 | 96,8  | 81,0          | 70,6          | 54,0 | 70,6  | 69,0          | 1,0 |



Az LDR és HDR tervek rectum adatainak összehasonlítása

1. ábra A rectum D2 cm<sup>3</sup> (%) értékeinek összehasonlítása



2. ábra A rectum D0,1 cm<sup>3</sup> (%) értékeinek összehasonlítása


3. ábra A rectum D0,01 cm<sup>3</sup> (%) értékeinek összehasonlítása



4. ábra A rectum D1 cm<sup>3</sup> (%) értékeinek összehasonlítása



5. ábra A rectum D10 (%) értékeinek összehasonlítása



6. ábra A rectum Dmax (%) értékeinek összehasonlítása