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ABSTRACT

Cardiac gating is an important technique used in many different
modalities of medical imaging to eliminate artifacts resulting from
the motion of the heart. It is often implemented with the use of an
electrocardiograph (ECG).

This thesis project was executed at Mediso Medical Imaging Sys-
tems. The main objective was the development of an ECG system
aimed at cardiac gating, to be used in the pre-clinical (small animal)
and clinical (human) imaging devices of the company.

The ECG system is based on a microcontroller and an ECG-specific
analog frontend. Prototype hardware was created using development
kits and the appropriate firmware was developed. Since the tests car-
ried out with the prototype system confirmed the suitability of the
concept, the final hardware was designed. The process is explained
in detail.

Cardiac gating also finds use in Magnetic Resonance Imaging (MRI),
but this causes challenges in ECG acquisition. Measurements were
carried out to assess the usability of the prototype system in MRI.
These results are also reported.

KIVONAT

A szivkapuzas fontos technika, amelyet szdmos kiilénb6z6 orvosi
képalkoté6 modalitas esetében haszndlnak a sziv mozgdsdbdl eredd
miitermékek kikiiszobolésére. A szivkapuzast gyakran elektrokardio-
graf (EKG) hasznélataval valésitjdk meg.

Ez a diplomamunka a Mediso Orvosi Berendezés Fejleszt6 és Szer-
viz Kft.-nél késziilt. A {6 célja egy szivkapuzdsra szolgdlé rendszer
kifejlesztése volt, a véllalat preklinikai (kiséllat) és klinikai (human)
képalkot6 késziilékeivel val6 hasznélatra.

Az EKG rendszer egy mikrokontrolleren és egy EKG-specifikus ana-
16g frontend aramkoron alapul. Fejleszttkészletek felhaszndldsaval
prototipus hardvert alkottam, és kifejlesztettem az azon futé szoftvert.
A prototipus rendszerrel lefolytatott tesztek aldtdmasztottdk, hogy az
elképzelés megfelel a célnak, igy megterveztiik a végleges hardvert.
Ezt a folyamatot a dolgozat részletesen leirja.

Szivkapuzast magneses rezonancia képalkot6 berendezésben (MRI-
ben) is alkalmaznak, de ebben az esetben kihivéast jelent az EKG mé-
rése. A prototipus rendszer MRI-ben valé hasznalhatésdgénak vizs-
gélatdra méréseket hajtottam végre, amelyek leirdsa szintén szerepel
a dolgozatban.
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INTRODUCTION

This thesis describes the development of an electrocardiograph (ECG)
system designed for cardiac gating. This chapter is aimed at high-
lighting the significance of cardiac gating in pre-clinical (animal) and
clinical (human) medical imaging.

Section 1.1 discusses electrocardiography based on [1]. Assuming a
basic knowledge of the anatomy of the heart, the physiological back-
ground of human ECG is explored, without delving into the clinical
significance of ECG traces. Next, the practical aspects of ECG recording
relevant to this project are reviewed.

Section 1.2 gives an overview of cardiac gating, and Section 1.3
deals with the challenges of ECG measurement in Magnetic Resonance
Imaging (MRI) machines.

1.1 ELECTROCARDIOGRAPHY (ECG)
1.1.1  Physiological background

As the heart undergoes depolarization and repolarization during the
cardiac cycle, the electrical currents that are generated spread not
only within the heart, but also throughout the body. This electrical
activity generated by the heart can be measured by an array of elec-
trodes placed on the body surface. The recorded tracing is called an
electrocardiogram (ECG, or EKG). Figure 1.1 shows the schematic rep-
resentation of a "typical" human ECG tracing. The different waves that
comprise the ECG represent the sequence of depolarization and repo-
larization of the atria and ventricles.

The P wave represents the wave of depolarization that spreads from
the sinoatrial (SA) node throughout the atria, and is usually 80-100ms
in duration. The brief isoelectric period after the P wave represents
the time in which the impulse is traveling within the atrioventricular
(AV) node and the bundle of His.

The period of time from the onset of the P wave to the beginning of
the QRS complex is termed the P-R interval, which normally ranges
from 0.12 to 0.20 seconds in duration. This interval represents the
time between the onset of atrial depolarization and the onset of ven-
tricular depolarization.

The QRS complex represents ventricular depolarization. Heart rate
can be calculated by determining the time interval between QRS com-
plexes. The duration of the QRS complex is normally 0.06 to 0.1 sec-
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Figure 1.1: Schematic representation of normal ECG. Courtesy of Wikipedia.

onds. This relatively short duration indicates that ventricular depolar-
ization normally occurs very rapidly.

The isoelectric period (ST segment) following the QRS is the time at
which the entire ventricle is depolarized.

The T wave represents ventricular repolarization and is longer in
duration than depolarization, since conduction of the repolarization
wave is slower than the wave of depolarization.

The Q-T interval represents the time for both ventricular depolar-
ization and repolarization to occur. This interval can range from o.2
to 0.4 seconds depending upon heart rate.

There is no distinctly visible wave representing atrial repolariza-
tion in the ECG because it occurs during ventricular depolarization.
Because the wave of atrial repolarization is relatively small in am-
plitude, it is masked by the much larger ventricular-generated QRS
complex.

1.1.2  Recording an ECG

By convention, in a 5-electrode ECG configuration, electrodes are posi-
tioned on each arm and leg, and one electrode is placed on the chest.
The limb electrodes are referred to as Left Arm (LA), Right Arm (RA),
Left Leg (LL) and Right Leg (RL), while the chest electrode is referred
toas V1. LA, RA, LL and V; are used as input electrodes in monitor-
ing the electrical activity of the heart, whereas RL is electrically driven
by the Right Leg Drive (RLD) circuitry to reduce the common-mode
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voltage on the other electrodes. In general, the RL signal is obtained
as the average of the other limb electrodes.

The conventional ECG leads are formed from the electrode signals.
The ECG leads are subdivided into the following categories:

e Standard limb leads: I, II, III
e Augmented limb leads: aVL, aVR, aVF
e Chest lead: V;

The leads are formed according to the following rules:

I = LA-RA
II — LL—RA
III = LL—-LA
VL = LA—%-(RAJrLL)

aVR = RA—%-(LA+LL)

aVE — LL—%-(LAH{A)

1
Vi = Vi—g (LA+RA+LL)

The standard limb leads are bipolar because the lead voltage is mea-
sured between two electrodes, while the other leads are unipolar be-
cause they are measured with respect to the Wilson Central Termi-
nal (WCT) voltage, which is defined as Viy = % -(LA+RA+LL).

In practice, ECG signal acquisition may be implemented with dif-
ferential amplifiers. In this case, the standard limb leads may be ob-
tained directly by connecting the appropriate electrodes to the inputs
of the differential amplifiers. The chest lead may be obtained by gener-
ating the WCT voltage and measuring the chest electrode with respect
to it. The augmented limb leads may be calculated digitally from the
other leads.

In the case of small animal measurements, three electrodes are gen-
erally used. The electrode configuration may be LA, RA and LL, or
alternatively, LA, RA and RL to provide feedback for common-mode
signal reduction.

1.2 CARDIAC GATING

Cardiac gating is a technique used to reduce artifacts due to heart
motion in medical imaging.

The heart is in motion during the cardiac cycle. It completes the
contraction required for its pump function during the systolic phase,
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then relaxes in the diastolic phase. Regardless of the imaging modal-
ity in use, it is desirable to create images of the heart while it is sta-
tionary in order to minimize motion artifacts. The diastolic periods
of lesser cardiac motion are ideal candidates for artifact-free imaging,
however, the temporal resolution of current imaging techniques is not
sufficient for the creation of images in a single stationary period. This
problem can be addressed with the use of ECG-synchronized tech-
niques to record and combine data from multiple stationary periods
for motion-free imaging.

The occurrence of the QRS complex in the ECG corresponds to the
period of greatest heart motion. Therefore, by recording QRS triggers
along with the image data, data from the periods of lesser motion
can subsequently be extracted for the reconstruction of motion-free
images (retrospective ECG gating). Moreover, the occurrence of QRS
complexes can be predicted on the fly from the previous ECG data,
which can be used in Computed Tomography (CT) imaging for re-
ducing the output power of the X-ray tube during systole in order to
reduce patient dose (prospective ECG triggering) [2].

Cardiac gating has been proven to be efficient in cardiac CT and
coronary angiography [2], cardiac Positron Emission Tomography
(PET) [3] and even in MRI diffusion tensor imaging of the brain [4].

1.3 ECG IN MRI

As discussed above, ECG acquisition in MRI is clinically relevant. How-
ever, it is a challenging task.

In addition to the inherent distortion of the ECG waveform in MRI
systems operating at high field strengths, the static, gradient and RF
electromagnetic fields of the MRI system can cause additional arti-
facts in the ECG signal [5]. Moreover, the ECG electrode leads may act
as antennas, guiding radio-frequency interference into the MRI bore,
thereby generating imaging artifacts or even causing image acquisi-
tion to fail.

An existing MRI-compatible ECG system for human applications em-
ploys long MRI-compatible cables and filtering in order to leave the
electronics outside of the MRI chamber [6], but solutions allowing the
monitor to be placed near the patient are also available [7, 8].

Solutions also exist for small animal applications [9, 10]. The doc-
umentation available on-line reveals very limited detail about these
systems, in particular with respect to the MRI architectures and field
strengths they are compatible with. However, both systems appear to
rely on MRI-compatible ECG electrodes and lead wires, and the elimi-
nation of artifacts in the ECG signal by digital filtering.

4



SPECIFICATIONS

The thesis project was executed at Mediso Medical Imaging Systems,
Hungary. The company’s specifications for the ECG system project re-
quire the development of a modular ECG system. The main module
should implement the acquisition of the ECG signals with QRS com-
plex detection, trigger generation and transmission for cardiac gating
in pre-clinical and clinical imaging machines, along with pre-clinical
respiratory measurement and triggering. The slave module should
implement a temperature control loop for small animal systems, mea-
suring and regulating the temperature of the animal bed. Each device
should implement two channels, i.e. it should be able to operate with
two patients (animals) simultaneously, with a shared microprocessor
(see Figure 2.1). Although the possibility to visualize signal wave-
forms is required, the project is not aimed at the development of a
diagnostic quality ECG system.

The thesis deals with the development of the main module, and
only describes details pertaining to the ECG functionality.

ECG Analog Front End
. Preamplification

. A/D conversion < SPI
. Lead off detection

. (Respiration measurement)

ECG electrodes >

Respiration sensor »  Pressure transducer ADC JR
l€— ETH >
< \N | >
Temperature control CAN | > MCU/DSP subsystem
. Signal processing
e QRS .conr?plex detection le_Tuss L»
. Respiration measurement
. Trigger generation
ECG Analog Front End e Temperature control
. Preamplification
ECG electrodes r P> . A/D conversion < ! SPI } >
. Lead off detection PR
e (Respiration measurement) <— CAN >

Respiration sensor » Pressure transducer ADC

Temperature control 4—@@ »

Figure 2.1: Block diagram of the ECG system.
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2.1 SPECIFICATIONS OF THE ECG SYSTEM

An excerpt of the original specifications by Mediso follows.

1. Input/output

¢ Digitization of signals from 4 ECG electrodes in parallel for
7-lead ECG

e RLD bias electrode
e ECG cables with standard connectors should be usable
e Communication interfaces: IEEE 1588 Ethernet, Universal

Serial Bus (UsB), Controller Area Network (CAN)

2. Electronics, signal processing

e Digitization of human and rat/mouse ECG signals

e Automatic QRS complex detection, trigger generation and
transmission

e Configurable ECG preamplifier gain

e Power line interference filter

e Switchable high- and low-pass filters

e Automatic detection and reporting of ECG electrode faults

e Protection against overvoltages from defibrillators

3. Safety

e Patient isolation: at least 4kV from communication inter-
faces and power network

e Defibrillator protection: at least 5 kV at inputs
e Compliance with the IEC 60601-2-25 standard for medical

electrical equipment

4. Design parameters (see Table 2.1)
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Table 2.1: Design parameters of the ECG system.

Min Typ Max

Supply voltage (DC) 9V 24V 36V
Number of ECG electrodes 4+1
Analog preamplification 1X 6x 12X
AD converter resolution 12 bits
Input bandwidth 0.05Hz 250Hz
Low pass filter frequency (human) 35Hz
Low pass filter frequency (animal) 75Hz
High pass filter frequency 0.05 Hz
Power line filter notch frequency s50Hz /

60 Hz
Input sensitivity 10uV
CMRR 100dB
Input voltage range +300mV
Input impedance 20MQ
Input-referred noise 15 uV
Heart rate (human) 400 bpm
Heart rate (animal) 8oobpm
Trigger latency 100ms
Trigger jitter 10ms




PROTOTYPING

3.1 CHOICE OF ARCHITECTURE

Many digital ECG designs are based on discrete electronic compo-
nents. Depending on the level of complexity used, the entire ana-
log signal processing stage is implemented using numerous separate
Integrated Circuits (ICs) up to the point of Analog-to-Digital (AD) con-
version. Publicly available examples include simple, 2-electrode ECG
monitor circuit designs by Analog Devices [11] and by Texas Instru-
ments (TI) [12], and the ADS1258 Medical Development Kit (MDK) by
TI [13].

However, at present several Analog Frontend (AFE) ICs are avail-
able that implement a significant portion of the analog functionality
required for ECG in one piece of silicon [14]. This might include lead
signal preamplification, an RLD DC bias circuit, generation of the WCT
voltage used as reference voltage, ECG lead-off detection, respiration
measurement over the ECG electrodes and AD conversion.

In order to facilitate hardware development and accelerate the de-
sign, I decided to execute the project based on an AFE IC. Two options
were commercially available for consideration:

o the ADS119x/129x" family by TI,
e the ADAS1000% by Analog Devices.

The features put forward by both candidates are very similar. In con-
trast to TI's high-end ICs, the ADAS1000 only has 5 input channels, but
this would be sufficient to implement the 4+1 electrode ECG required
by the specifications (see Chapter 2). However, the ADAS1000 is still in
the pre-release phase at the time of writing this document, therefore
TI's offer was the reasonable choice.

The TI ADS129x family offers better performance than the ADS119x,
notably in terms of resolution, noise and Common-Mode Rejection
Ratio (CMRR). Optionally, it also integrates the possibility to imple-
ment respiration measurement over ECG electrodes [15]. Moreover, it
is relatively inexpensive, thus it was chosen for development.

The prototyping phase was carried out using an ADS1298R IC, but
the final product does not require all the input channels it offers and,
depending on the configuration, the respiration capability might also

http://www.ti.com/ww/en/analog/ads1298/index.shtml?DCMP=analog_
signalchain_mr&HQS=ads1291-pr
http://www.analog.com/en/analog-to-digital-converters/ad-converters/
adasl000/products/product.html
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http://www.ti.com/ww/en/analog/ads1298/index.shtml?DCMP=analog_signalchain_mr&HQS=ads1291-pr
http://www.analog.com/en/analog-to-digital-converters/ad-converters/adas1000/products/product.html
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INPUTS

TOHLNOO ANV OIdD

ADS129xR

Figure 3.1: Block diagram of the ADS1298R [15].

be unnecessary, so one of the less expensive pin-compatible variants
may be used in the end-product.

3.1.1 The ADS1298R IC

The ADS1298R3 is an 8-channel AFE meant for biopotential measure-
ments (see Figure 3.1). It features eight low-noise Programmable Gain
Amplifiers (PGAs) and eight high-resolution Analog-to-Digital Con-
verters (ADCs) for fully parallel data acquisition at a wide range of
configurable data rates. It offers low power consumption and small
input-referred noise alongside a high CMRR. It provides built-in RLD
circuitry, lead-off detection and WCT circuitry for ECG. It also inte-
grates support for respiration impedance measurement over ECG elec-
trodes.

The ADS1298R provides a convenient Serial Peripheral Interface (SPI)
for configuration and measurement data readout, thus it requires
only a limited number of additional digital control signals [15].

3.2 THE ECG PROTOTYPE
3.2.1 The ADS1258 MDK
At the beginning of development, an ECG MDK based on TI's ADS1258*

IC was already available at Mediso. This development kit consists
of an Evaluation Module (EVM)> by Spectrum Digital based on TI's

3 http://www.ti.com/product/ads1298r
4 http://www.ti.com/product/ads1258
5 http://support.spectrumdigital.com/boards/evm5505/revd/

9
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Figure 3.2: Photo of the ADS1298R ECG FE-PDK.

TMS320VCs505° Digital Signal Processor (DSP), and a piggy-back mod-
ule hosting the ADS1258 and accompanying circuitry. The Performance
Demonstration Kit (PDK) also includes the firmware running on the
DSP implementing ECG signal acquisition and processing, and a PC
application which receives the ECG waveforms over a serial link and
plots them.

Since the ADS1258 is merely a 16-channel ADC and all ECG-related
functionality is implemented using external components, this IC was
not considered for design. However, the TMS320VCs505 EVM has proved
to be essential in later development (see Section 3.2.3), and I also
reused the PC application supplied with the MDK (see Section 3.3).

3.2.2 The ADS1298R ECG FE-PDK

To start experimenting with the AFE I've chosen, I ordered an ADS1298R
PDK. The kit contains the MMBo Modular EVM motherboard that hosts
a TI TMS320VCs5097 DSP, and the ADS1298R ECG AFE on a piggy-back
board. The assembled system is shown in Figure 3.2.

Once out of the box and wired up to a PC, the demo kit acquired
ECG signals perfectly, yet it wasn’t usable for further development
because of the lack of documentation and development tools for the

6 http://www.ti.com/product/tms320vc5505
7 http://www.ti.com/product/tms320vc5509
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Figure 3.3: Photo of the ECG prototype system connected to an ECG simulator.
The acquired ECG waveforms are visible on the LCD display.

MMBo board. According to TI, “The MMBo is not intended to be a full
embedded development tool, it is an evaluation platform.”

3.2.3 The ECG prototype system

Fortunately, the two PDKs share the same piggy-back interface, hence
mounting the ADS1298R piggy-back module on the TMS320VCs505 EVM
is possible. The piggy-back interface provides all the necessary sig-
nals for the SPT interface used in the communication with the ADS1298R
IC and the digital control signals. Since the EVM offers excellent devel-
opment and debug support through TI’s Eclipse-based Code Com-
poser Studio suite, it is an ideal platform for a detailed exploration
of the features of the ADS1298R AFE. The EVM also features a color
AMOLED? Liquid Crystal Display (LCD) and a Universal Asynchronous
Receiver/Transmitter (UART) port which were useful for visualizing
the ECG waveforms both locally and through data transmitted to a PC
(see Section 3.3).

Figure 3.3 shows the ECG prototype system connected to an ECG
simulator (see Section 5.1.1). The digitized output of the simulator is
displayed on the LCD screen.

8 Official comment on http://e2e.ti.com/support/data_converters/precision_
data_converters/f/73/t/151713.aspx, retrieved on 09/05/2012.
9 Active-matrix organic light-emitting diode.
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3.3 FIRMWARE DEVELOPMENT

Since the ECG prototype system is implemented using the DSP module
of the ADS1258 MDK, several features of its firmware are based on the
firmware supplied with the MDK by TI.

3.3.1 The firmware of the ADS1258 MDK

Following are the features of the firmware supplied with the ADS1258
MDXK, as listed in TI's application note [13]. I also appended brief expla-
nations, mainly focusing on how they relate to the features required
in the firmware of the ECG prototype system (see Section 3.3.2).

Data acquisition through ADC

The firmware establishes communication with the ADS1258 IC over the
SPI bus for configuration and data retrieval. The ADS1298R also has an
SPI interface, however, the protocol is different. In addition to adapt-
ing the protocol, I rewrote the entire SPI implementation in the ECG
prototype system firmware for clarity.

Lead-off detection

ECG lead-off detection is implemented using external circuitry on the
ADS1258 MDK board. The firmware takes care of the communication
with these. Since the ADS1298R implements lead-off detection inter-
nally and the status information can be read out over srJ, this feature
is not required in the ECG prototype system.

DC signal removal

The firmware implements a first-order digital Infinite Impulse Re-
sponse (IIR) filter for baseline restoration of the ECG signal. The fre-
quency response of the filter is shown in Figure 3.4. The filter is im-
plemented in platform-independent C code and I reused it in the
prototype firmware almost without modifications.

Multi band-pass filtering

The firmware implements a digital Finite Impulse Response (FIR) fil-
ter. The coefficients of the filter realize a low-pass filter for the elim-
ination of high-frequency noise with a notch for the suppression of
power line interference. Figure 3.5 shows the frequency response of
the filter with coefficients realizing a notch at 50 Hz.

The FIR filter is implemented in architecture-specific assembly code.
I reused the implementation in the ECG prototype system firmware
with different filter coefficients yielding different filter characteristics.

12
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Figure 3.4: Frequency response of the IIR filter of the ADS1258 MDK [13]. The
filter suppresses the DC component of the signal for baseline
restoration.
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Figure 3.5: Frequency response of the FIR filter of the ADS1258 MDK [13]. The
filter has a notch at 50Hz to suppress power line interference
and has a stopband with a very high attenuation above 150 Hz
to filter out high frequency noise.
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ECG leads formation

The firmware carries out ECG lead formation from the single ended
input signals with simple arithmetics according to the rules described
in Section 1.1.2. Since the ADS1298R has differential inputs, the arith-
metic operations to perform are different.

QRS (heart rate) detection

The firmware implements the detection of the QRS complex (see Sec-
tion 1.1.1) in the ECG signal for heart rate measurement. QRS detection
is a crucial feature required for cardiac gating, but this requires real-
time detection with limited latency. However, this algorithm is only
aimed at heart rate measurement, it has unacceptably high latency
and is unsuitable for the purposes of the ECG system.

Display of ECG data

The acquired ECG waveform is plotted on the AMOLED LCD screen
with a possibility to select the ECG lead to plot using the keys of the
EVMss0s. This feature was useful for demonstration purposes and has
been reused in the ECG prototype system with negligible modifica-
tions.

UART communication

The acquired ECG data is transmitted over UART to the PC application
for display. This feature was also useful for demonstration and has
been reused in the ECG prototype system firmware.

3.3.2 The firmware of the ECG prototype system

The main purpose of the ECG system is to issue triggers for gated
imaging at the occurrence of QRS complexes with deterministic delay,
i.e. limited and unvarying latency, and small jitter (see Chapter 2).
The firmware has been designed with this requirement in mind. Most
of the project is implemented in platform-independent C code, with
the exception of the low-level CPU peripheral drivers and the FIR filter.

The flowchart of the ECG prototype system firmware is shown in
Figure 3.6. A detailed description follows.

The main function

The main function performs the initialization of the entire ECG sys-
tem.

It initializes the peripherals of the DSP: SPI for communication with
the ADS1298R, UART for data transfer to the PC, a Successive Approx-
imation Register (SAR) ADC that reads out keypresses for LCD con-
figuration, the LCD for ECG waveform display, and General Purpose

14
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Figure 3.6: Flowchart of the ECG prototype system firmware.

Input/Outputs (GPIOs) for controlling the ADS1298R and debugging
features.

It then initializes and configures the ADS1298R AFE. The register set-
tings can be found in Listing A.1 (for detailed explanations, see [15]).
The following set of main configuration parameters has proved to be
usable in all cases tested so far (see Section 5.1):

e Sample rate set to 1000SPS by default.
e The gain of all PGAs is set to 6.
o Lead-off detection is enabled for all ECG electrodes.

e The RLD and WCT signals are generated as the average of the
LA, RA and LL signals (see Section 1.1.2).

Finally, it enters an infinite loop where, whenever data is available, it
plots ECG waveforms to the LCD and transmits ECG data over UART to
the PC for display. It also monitors keypresses and updates the LCD
display configuration accordingly.

Figure 3.7 shows a screenshot of the PC application. The ECG wave-
forms and actual measured heart rate of a rat are displayed as ac-
quired by the ECG prototype system. The measurement configuration
only included the electrodes necessary for the calculation of Lead I
(see Section 5.1.3), thus the waveform displayed for Lead II is calcu-
lated and displayed incorrectly and should be considered an arith-
metic artifact.

15
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Figure 3.7: Screenshot of the PC application displaying the ECG waveforms
and actual measured heart rate of a rat, acquired by the ECG
prototype system.

The DRDY interrupt subroutine

The ADS1298R is configured for continuous data acquisition, thus it
provides new data at the sampling rate specified in the configuration,
signaling its availability through its Data Ready (DRDY) output signal.
The prompt response of the ECG system to the availability of new
data is ensured by an interrupt mapped to the DRDY signal. Whenever
new data is available, the firmware reads it out over the SPI bus, then
executes the following steps of processing:

e Data preprocessing. Lead-off information is extracted from the
status word received from the ADS1298R.
The 24-bit output of the ADC is converted to 16-bit resolution
by truncation of a configurable number of bits. To allow for a
flexible input configuration, the ADC channel values are sorted
into an internal buffer according to a changeable map. The input
values that contain signal from any disconnected electrode are
zeroed out. Based on the lead-off status, one healthy lead is
selected for QRS detection.

e Filtering.

— Baseline restoration. A first-order IR filter adapted from the
ADS1258 MDK (see Section 3.3.1) is used for suppressing the
DC component of the ECG signal. The frequency response
of the filter is shown in Figure 3.8.
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Figure 3.8: Frequency response of the DC removal IIR filter. The filter restores
the baseline of the ECG signal.

— Band-pass filtering. 1 reused the FIR filter implementation

in the ADS1258 MDK with a set of custom coefficients I de-
signed in Matlab for a 128-tap FIR filter. The lower stop-
band of the band-pass filter reduces undesirable signal con-
tributions from muscle movement, weakens the P and T
waves and softens the QRS complex, but since the project is
not aimed at the creation of a diagnostic quality ECG, this
is acceptable. The higher stopband is designed to filter out
high frequency noise. Figure 3.9 and Figure 3.10 show the
frequency response of the filters used in human and small
animal applications, respectively (see Chapter 2). Both fil-
ters have linear phase in the passband, which is a desirable
characteristic since it implies equal delay at all frequencies.
FIR filters have a characteristic delay which is determined
by the location of the peak of the filter impulse response.
Since both filters have this peak at half the number of taps,
64 samples (see Figure 3.11), the delay introduced is 64 ms
at 1000 SPS.
Due to the integer arithmetics used in the FIR filter im-
plementation, the filter coefficients were converted from
double-precision floating point to integers. As a result, pre-
serving the relatively flat response in the passband, the
filters have significant amplification. However, with suf-
ficient care taken to avoid arithmetic overflows, this was
very easily compensated.

- Notch filtering. Since the stopband of the band-pass filter for
preclinical applications lies above the frequency of power
line interference, in these applications, a separate filter is
required for the suppression of these undesirable contribu-
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Figure 3.12: Frequency response of the IR notch filter for power line inter-
ference suppression. Notch frequency is 50 Hz. The filter has a
relatively blunt notch to reduce transients.

tions. For this purpose, I designed an IR filter in Matlab.
Based on the coefficients obtained, I implemented this fil-
ter as a cascade of two second-order IIR stages in platform-
independent C code. Figure 3.12 depicts the frequency re-
sponse of the filter with a 50 Hz notch.

e QRS detection. As discussed in Section 3.3.1, the QRS detection al-

gorithm implemented in the ADS1258 MDK is unsuitable for the
purposes of the ECG system. Therefore, I implemented a detec-
tion algorithm based on the Pan-Tompkins algorithm [16].
The algorithm relies on the previously filtered signal. As men-
tioned above, the band-pass filter distorts the P and T waves in
the ECG signal. It also softens the peak of the QRS complex, how-
ever, by subsequent application of a five-point digital derivative
filter and squaring its output, the output has proved to be an
excellent metric for QRS detection in all cases tested (see Sec-
tion 5.1). Pan and Tompkins applied a moving window average
filter to this signal, which yields a series of pulses and allows for
QRS detection through rising edge detection. I simply perform
threshold crossing detection on the squared derivative with an
adaptive threshold established based on the last five detection
amplitudes. Each detection inhibits further detections for a con-
figurable amount of time, thereby avoiding multiple detections
of the same QRS complex.

e UART and LCD flag generation. Not all samples are sent to the
UART and LCD. The ratio of decimation is configurable and the
corresponding data ready flags, processed by the main loop, are
generated accordingly.
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HARDWARE DESIGN

I carried out the hardware design in cooperation with my colleague
Séandor Torok. Many design choices originate from his professional
experience.

4.1 CHOICE OF MICROPROCESSOR

The specification of the project requires the implementation of a vari-
ety of communication interfaces (see Chapter 2). Among those speci-
tied, the TI TMS320C5000 Ultra Low-Power DSP family supports USB, but
not IEEE 1588 Ethernet or CAN. These interfaces could have been real-
ized using external ICs, but in order to keep the number of electronic
components to a minimum, I decided to search for a microprocessor
that has integrated support for all required interfaces. This means a
change of architecture, but since a significant part of the ECG system
firmware is platform-independent high-level C code, porting the code
is possible with reasonable effort.

In order to provide ample processing power for filtering the ECG
signal, I started looking for another DSP. Among the manufacturers I
considered - TI, Analog Devices and Freescale -, TI appeared to have
the most detailed documentation, and they offer excellent on-line
tools for microprocessor selection’. In addition, I had already famil-
iarized myself with their design tools, therefore I decided to choose a
microprocessor by TI.

In TI's high performance DSP & ARM CPU line, I was left with two
candidate families. The high-end DaVinci DsP family* has several
members that offer all required communication interfaces but the
capabilities of these processors far exceed the requirements of the
project and they are also rather expensive. The selection tool also rec-
ommended the Sitara family3. Even though they are not DSPs, these
ARM-based CPUs are aimed at performance applications and seemed
to offer sufficient processing power for the ECG application at an af-
fordable price. However, before I could order a development kit, a
colleague brought TI's Concerto Microcontroller Unit (MCU) family*
to my attention. These microcontrollers feature all communication in-
terfaces required by the specification, and development boards were
readily available at the office.

http://focus.ti.com/en/multimedia/flash/selection_tools/dsp/dsp.html
http://www.ti.com/lsds/ti/dsp/platform/davinci/device.page
http://www.ti.com/lsds/ti/dsp/platform/sitara/device.page
http://www.ti.com/mcu/docs/mcuproductcontentnp.tsp?sectionld=
95&familyId=2049&tabId=2743
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Figure 4.1: The architecture of the Concerto MCU family [17].

The Concerto family is based on a very interesting architecture,
which is shown in Figure 4.1. These MCUs combine an ARM Cortex-
M3 core aimed at communication with a C2000 DSP core that offers
similar performance to the C5000 DSP I had used.

I carried out preliminary tests with the development board. I ported
the most computationally intensive part of the firmware, the FIR fil-
ter (see Section 3.3) to the C2000 DSP core, and I also experimented
with the communication between the two cores. These tests suggested
that the high-end Concerto F28M35H52C1°> would be very suitable for
the ECG system project. Since it is quite reasonably priced and also
offers an integrated recyclic ADC useful for small animal respiratory
measurement (see Section 4.2.4), it was chosen for hardware develop-
ment.

4.2 HARDWARE DESIGN CONSIDERATIONS

Since the specification of the ECG system requires the implementa-
tion of two channels on a single board, the entire ECG hardware (see
Section 4.2.3) and small animal respiratory measurement stage (see
Section 4.2.4) is doubled.

Nearly all digital signal lines in the design feature series resistors
for limiting transient currents.

The design features several LEDs driven by the MCU to provide a
direct means of conveying information to the user.

5 http://www.ti.com/product/f28m35h52c
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4.2.1  Patient protection

The IEC 60601-2-25 standard for ECGs requires that in human applica-
tions, the patient be electrically isolated from the power network and
communication interfaces of the device. The breakdown voltage must
be at least 4 kV.

The alternatives considered for the implementation of the isolation
are the following;:

e Isolation on the analog side, before the inputs of the ADS1298R.

e Isolation of the signal paths between the ECG AFE and the MCU,
keeping the AFE in a separate power domain.

e Isolation of the external communication interfaces and power,
keeping the MCU and the AFE in the same isolated power do-
main.

Creating separate, isolated power domains for each ECG AFE and iso-
lating the digital signal paths to the MCU offers several advantages
over the two other methods. Excellent methods are readily available
for the isolation of on-board digital signal paths, making this alterna-
tive less cumbersome than the medical quality isolation of the com-
munication interfaces and more robust than the isolation of analog
signals. Moreover, this solution intrinsically fulfills the requirements
for isolation between the two ECG stages for two patients, thus it ap-
peared to be the best choice.

In order to provide the required isolation strengths, the portions
of the board containing the ECG AFEs have been protected against
leakage currents by incisions in the board layout (see Figure 4.3).

Additionally, the main power supply (see Section 4.2.2) and the
CAN interfaces (see Section 4.2.6) are also electrically isolated, even
though no medical quality isolation is provided in these cases.

4.2.2  Power supplies

The external components required for each regulator have been se-
lected following the guidelines set forth in the respective datasheets.
A number of ferrite bead chokes have been used throughout the de-
sign for the suppression of high frequency interference on power sup-
ply lines.

Main power supply

Since the highest supply voltage required in the ECG system is 5V,
this has been chosen as the output voltage of the main power supply.
In order to comply with the requirement for a wide input voltage
range and provide electrical isolation between the power network and
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the board, the TEN5-2411WI DC-DC converter by TracoPower has been
selected. This power supply provides a regulated output voltage of
5V with a maximal output current of 1 A, and offers an efficiency of
typically 78% [18]. Its output current is sufficient for the application,
and since the sensitive components require 3.3 V power, its ripple will
be suppressed by additional linear regulators.

ECG power supplies

The ECG circuitry resides in a separate power domain, which must be
isolated from the rest of the board to comply with the requirements
of the standard (see Section 4.2.1). In order to achieve this, the RV-0505S
DC-DC converter by Recom was used. This device possesses the medi-
cal approval required by the application. With an input voltage of 5V,
it supplies a maximum output current of J00mA at an unregulated
output voltage of 5V, with standard efficiencies of 70-75% [19].

Since the ADS1298R requires 3.3V power and the output of the iso-
lated power supply is unregulated, additional regulation is necessary.
In order to minimize the ripple of the output voltage, linear regu-
lation is desirable. Moreover, to suppress interference from the digi-
tal side of the IC to the analog side and thereby reduce the noise of
the ADC, the best solution is having two separate regulators provide
power to the analog and digital domains of the AFE. The TPSy9201 by
TI was chosen for its ultralow noise and high Power Supply Rejection
Ratio (PSRR) [20]. Its current sourcing capabilities are largely sufficient
for the requirements of the ECG stage.

CAN power supplies

The two CAN interfaces used (see Section 4.2.6) are also isolated. Their
isolated power domains are supplied by TME o505S isolated DC-DC con-
verters from TracoPower, which provide a maximal output current of
200mA at 5V with an input voltage of 5V, with a typical efficiency
of 70% [21].

MCU power supply

The F28M35H52C1 MCU can operate with a single 3.3V power supply
since it has internal regulators supplying all other voltages it requires.
TI's TPSy9601 was selected for its excellent performance similar to the
regulators used for the ADS1298R and its higher current sourcing capa-
bilities up to 1 A [22]. Since in this case, the suppression of noise to the
analog subsystem is not a critical issue, the same regulator supplies
both digital and analog power, with a ferrite bead choke separating
the two power domains to ensure high frequency noise reduction.
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4.2.3 ECG hardware

The external components required by the ADS12g8R AFE have been
selected following the guidelines of the datasheet [15].

Patient protection

As discussed in Section 4.2.1, medical quality electrical isolation is
required in ECG systems. In addition to placing the ECG electronics
in an isolated power domain, this also requires the isolation of the
digital lines to and from the AFE. Traditionally, optocouplers were
used for this purpose, but this technology suffers from aging effects
in the LED and difficulties at higher signaling speeds. The iCoupler
technology by Analog Devices overcomes these limitations, it offers
far superior performance and significantly lower power consumption
[23]. The ADuM2401 device chosen for isolation offers a suitable num-
ber of input and output channels, can operate at the foreseen SPI bus
frequency of 10 MHz and complies to the requirements of the IEC
60601 standard.

Since the two ECG AFEs share the same SPI bus, additional buffers
gated with the respective SPI Enable signals were required on the
Master In Slave Out (MISO) lines to avoid two ADuMz2401 outputs con-
currently driving the MISO input of the MCU.

The clock signal is routed to both AFEs from the same 2.048 MHz
clock generator residing in the main power domain through the elec-
trical isolators.

The analog input stage

The ADS1298R features a Delta-Sigma (AX) AD converter. The AX mod-
ulator and the on-chip digital decimation filters can be used to filter
out the noise at higher frequencies, thus the complexity of analog
antialiasing filters required can be dramatically reduced with respect
to Nyquist ADCs. Effectively, the input antialiasing filters are only re-
quired to filter out any interference at frequencies around multiples
of fmop, the sampling frequency of the modulator [15]. In High Res-
olution mode, fyop = fcrx/4 = 512 kHz.

Therefore, only a simple RC filter is required for antialiasing at the
input of the ADS1298R ICs, which was adapted from the circuit design
put forward by TI in [24]. Figure 4.2 shows the magnitude response
of the antialiasing filter. Complemented by the input EMI filter within
the ADS1298R IC [15], this ensures the required antialiasing.

A neon lamp was added in parallel to the filter in order to provide
the defibrillator protection required by the specifications on the in-
puts of the AFE IC. The neon lamp has a maximum strike voltage of
90V [25]. In conjunction with the resistor in series, it limits transient
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Figure 4.2: Frequency response of the input antialiasing filter. The graph
confirms that, together with the EMI filter within the ADS1298R,
the filter ensures the antialiasing required.

currents reaching the inputs of the ADS1298R to approximately gmA,
which the inputs can withstand [15].

4.2.4 Small animal respiratory measurement

Based on previous experience, the SDP1108-R differential pressure sen-
sor by Sensirion has been chosen for the purpose of respiratory mea-
surement. It requires a 5V DC power supply and provides a fully
calibrated analog voltage output. It offers a full scale pressure differ-
ence of 500 Pa with superior accuracy, outstanding resolution and low
temperature dependence through internal compensation [26].

The proposed measurement configuration consists of a tiny respi-
ration sensor cushion® the small animal lies on for measurement. The
output of the cushion is connected to the Hi terminal of the SDP1108-R,
while the Lo terminal is left open, thus atmospheric pressure is used
as reference. The performance of the SDP1108-R makes it highly suit-
able for measuring the small volume flows generated by the cushion
through the breathing of the animal.

The analog output voltage of the SDP1108-R is connected to an ADC
input of the MCU for digitization. Since the output voltages range
from 0.25V to 4V and the ADC operates with a reference voltage of
3V, a voltage divider is required between the output and the input. In
addition, an optional RC filter has been added to the design to ensure
the possibility of limiting high-frequency noise.

Eg. http://www.medicare.ie/mother-baby/infant-respiration-monitors-
rental-1/graseby-respiration-sensor.html.
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4.2.5 Microcontroller unit

The quartz oscillator, decoupling capacitors, pullup/pulldown resis-
tors and other required external components have been laid out ac-
cording to the guidelines of the datasheet [27].

A JTAG interface has been implemented for programming and de-
bugging.

The F28M35H52C1 offers a total of five SPI interfaces. Both ECG AFEs
are connected to the only one of those that is controlled by the Dsp
core to allow for readout and data processing by the same core.

In addition to the output of the pressure sensors (see Section 4.2.4),
two supply voltages have been connected to ADC inputs of the Con-
certo through resistive dividers to allow monitoring the state of the
power supplies.

4.2.6 Communication interfaces

Ethernet

In addition to the Ethernet MAC in the Concerto, a transceiver IC and
an RJ-45 connector is required for Ethernet communication. This cir-
cuitry has been adapted from the circuit design of the TI H52C1 Con-
certo ControlCard [28].

USsB

The F28M35H52C1 includes the implementation of the physical layer,
therefore only a USB connector is required for communication. Since
the ECG system is only meant to be used as a USB device, a simple
USB-B connector has been implemented in the design, along with pro-
tection diodes on the data lines.

CAN

The ECG system design makes use of both CAN interfaces of the Con-
certo. CAN is used as an external communication interface and also
for connecting to the slave modules (see Chapter 2). 9-pin D-SUB male
connectors are used.

To complement the isolated power supplies, TI's 1SO1050 isolated
CAN transceivers [29] have been used in the design for CAN interface
isolation.

In addition to protection diodes on the CAN data lines, the slave
module (“bed”) CAN circuitry features a solution that disables the
local CAN termination resistor if the slave modules for both channels
are attached. In contrast, the external CAN interface complies to the
protocol in use at Mediso, thus it features a termination resistor that
can be enabled externally through the D-SUB connector.
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4.3 THE HARDWARE

Figure 4.3: Rendered visualization of the populated ECG printed circuit
board. Note the incisions protecting the ECG circuitry from leak-
age currents.

4.3 THE HARDWARE

Based on the aforementioned considerations, the schematic (see Ap-
pendix A) and layout design of the final printed circuit board have
been completed. At the time of writing this thesis, the circuit board
is being manufactured. Figure 4.3 shows a rendered visualization of
the populated printed circuit board.
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MEASUREMENTS

Since no final ECG system hardware has been produced yet at the time
of writing this thesis, all measurements described in this chapter were
carried out using the ECG prototype system. However, the expected
performance of the final hardware is very similar.

The output of the ECG system has not yet been calibrated for con-
verting output values to voltages, thus all amplitude axes show values
in arbitrary units.

5.1 ECG SIGNAL ACQUISITION
5.1.1 ECG simulator

Initial ECG measurements were made with an ECG simulator, a device
featuring connectors for ECG lead wires and capable of generating
ECG waveforms. The ECG system was connected to the simulator with
a standard human ECG cable in a 5-electrode configuration, as shown
in Figure 3.3. The following examples illustrate the performance of
the system with input signals from the simulator.

Figure 5.1 shows a recording of the ECG simulator output with am-
plitude set to 1mV and heart rate set to 60obpm. The unfiltered ECG
data features very characteristic P and T waves and QRS complex,
along with a negligible contribution from power line interference. In
this case, the unfiltered data would be directly usable for QRS de-
tection, however, filtering was carried out for comparison. Since the
bandpass filter for human applications was used, use of the notch
filter for power line interference suppression was not required.

Suppression of the DC component by the baseline restoration filter
is well visible in the filtered data. The limited delay and waveform
distortion resulting from the FIR filter are also identifiable, however,
these effects are acceptable (see Section 3.3.2). As a result, the discrete
derivative provides a perfectly usable QRS metric.

Figure 5.2 depicts a recording of the output of the simulator with
the same settings (note the different scale on the time axis), deliber-
ately corrupted by 50 Hz power line noise by placing a soldering iron
close to the ECG system. The filtering does a remarkable job in elimi-
nating power line interference and a usable QRS metric is produced.
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5.1 ECG SIGNAL ACQUISITION

ECG data, unfiltered
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Figure 5.1: Recording of the ECG simulator output.
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Figure 5.2: Recording of the ECG simulator output, corrupted by 50Hz noise.
This figure demonstrates the efficiency of the notch filter in elim-
inating power line interference.
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Figure 5.3: Human ECG recording. This figure illustrates the power of the fil-
ters in suppressing power line interference and baseline wander.

5.1.2 Human ECG

Figure 5.3 shows the author’s ECG recording at rest, acquired in a 3-
electrode configuration with LA and RA input electrodes, and the RL
feedback electrode connected to the appropriate limbs. The record-
ing exhibits noticeable power line interference and breathing causes
significant baseline wander in the ECG trace. However, these distor-
tions are eliminated by the DC suppression and bandpass filters. This
yields a very high quality metric for QRS detection. The average heart
rate during the measurement can be identified as approximately 75-
8obpm.

Figure 5.4 shows the author’s stress ECG recording while perform-
ing squats. The baseline restoration filter performs remarkably once
more, however, due to muscle movement, the unfiltered ECG data
exhibits sharp transitions the currently used filters cannot eliminate
satisfactorily. This leads to the presence of spurious pulses in the QRS
metric, thus unwanted QRS triggers.

5.1.3 Small animal ECG

To verify its capability to acquire the ECG signals of rodents, the ECG
system was tested with anesthetized small animals. These recordings
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5.1 ECG SIGNAL ACQUISITION

ECG data, unfiltered
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Figure 5.4: Human stress ECG recording. This figure demonstrates the chal-
lenges faced in the processing of stress ECG signals.

were carried out in a 3-electrode ECG configuration with LA and RA
input electrodes and a feedback electrode, RL, connected to the limbs
of the animal. 3M Red Dot neonatal, pre-wired, radiolucent moni-
toring electrodes were employed with a standard, unshielded ECG
cable. The bandpass filter for small animal measurements was used,
therefore the notch filter for power line interference was required (see
Section 3.3.2).

The photo of an anesthetized rat fitted with ECG electrodes can be
seen in Figure 5.5. Figure 5.6 shows the ECG signal recording. The un-
filtered signal suffers from significant power line interference. Due to
the transients of the notch filter, this interference is only attenuated,
not completely eliminated. Filtering also reduces the amplitudes of
the QRS complexes. However, both the unfiltered and the filtered sig-
nal yield a usable QRS metric through the discrete derivative filter.
The heart rate of the rat was measured to be around 235bpm (see
Figure 3.7), which is in accord with the values found in the literature
[30].

Figure 5.7 shows the ECG of a hamster. Surprisingly, the signal fea-
tures inverted QRS complexes due to biological reasons. The signal ex-
hibits limited baseline wander and negligible power line interference.
In this case, filtering yields no obvious improvement with respect to
the unfiltered signal, and the amplitudes of the QRS complexes are re-
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Figure 5.5: The anesthetized rat fitted with ECG electrodes.
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Figure 5.6: Rat ECG recording. This figure illustrates the capability of the
processing to create a usable QRS metric.
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ECG data, unfiltered
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Figure 5.7: Hamster ECG recording. This figure demonstrates the ability of
the processing to create a usable QRS metric.

duced. However, as was the case with the ECG of the rat, both filtered
and unfiltered signals are usable for QRS detection. The heart rate of
the hamster was measured to be around 430 bpm, which corresponds
to the values found in the literature [31].

5.2 PERFORMANCE IN MRI

Mediso assembles permanent magnet MRI machines for small animal
applications. Compared to electromagnet-based devices, these ma-
chines offer the advantage of a limited fringe field [32], thus metal-
lic objects may be brought into the vicinity and ordinary electronic
devices may be operated near the machine. This means that ECG mea-
surement in MRI might be possible by setting up the ECG system next
to the MRI machine and using MRI-compatible ECG electrodes within
the bore of the MRI magnet.

The manufacturer claims that the 3M electrodes I used for small
animal ECG measurements (see Section 5.1.3) are not MRI-compatible.
Nevertheless, the electrodes are non-ferrous and the pre-attached lead

wires are made of carbon. Moreover, Small Animal Instruments, Inc.

use the same electrodes in their MRI-compatible ECG system [10], thus
these electrodes were good candidates for measurements in MRI.
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5.2 PERFORMANCE IN MRI

5.2.1 Initial measurements

In order to assess the viability of measuring ECG as outlined above,
I carried out initial measurements with an MRI water phantom and
the 3M electrodes within the magnet bore. The two ECG electrodes
that form the ECG lead under measurement were connected together
with approximately 100 k() contact impedance, which reasonably ap-
proximates usual ECG contact impedances. This setup was placed in
the MRI animal bed underneath the phantom and inserted into the
MRI bore. No actual signal source was connected to the electrodes,
thus the measurement was expected to register background noise and
eventual MRI contributions.

Figure 5.8 shows the result of the acquisitions. The upper plot de-
picts the spectrum of the background acquired within the MRI bore,
with no MRI sequence in progress. The spectrum is clearly dominated
by 50Hz power line interference with significant harmonic content.
The lower plot shows the spectrum of the data acquired during the
execution of a scout MRI sequence. I deemed the results promising,
since MRI contributions are only visible around 260 Hz and 480 Hz,
outside of the frequency band of interest, and should therefore be
easy to attenuate. It is noteworthy that 260 Hz corresponds to the
repeat period of the radio frequency pulses in the scout sequence,
3.8 ms. It should also be noted that although the spectra of the 50 Hz
harmonics are visually similar, MRI interference appears to amplify
several harmonics.

The MRI images acquired of the phantom with the electrodes in
place were only slightly deteriorated, showing limited signs of inter-
ference generated by the electrodes. The electrodes were not visible
on the MRI image.

5.2.2  Small animal measurements

ECG measurements

Based on the positive experience gained with the initial measure-
ments, I attempted measuring the ECG of a hamster within MRI. I
used the same electrode configuration as in Section 5.1.3. Measure-
ments with the hamster inside the MRI bore, but with the gradient
and radio frequency systems of the MRI machine turned off, yielded
results in excellent agreement with those obtained outside of the ma-
chine. Thus, the field of the permanent magnet appears to have no
noticeable influence on the measurement.

Figure 5.9 shows the result of the measurements. The upper plot de-
picts the spectrum of the hamster ECG acquired within the MRI bore,
with no MRI sequence in progress. It is interesting to note that the
spectrum appears to be discrete, which suggests that the heart rate
of the hamster is very steady. The lower plot shows the spectrum of
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Figure 5.8: Spectrum of the background signal acquired within the MRI bore,
without MRI sequence in progress and during a scout sequence.

the data acquired during the execution of a scout MRI sequence. MRI
interference appears at the same frequencies that were identified ear-
lier, however, in this case, it dominates the signal. This demonstrates
a weakness of the filtering in use: Figure 5.10 shows that the low
frequency spectrum of the hamster ECG is partially preserved, with
some frequency components diminished. However, the filtering can-
not sufficiently attenuate the high-frequency interference, thus QRS
detection on the filtered signal fails.

Figure 5.11 shows an ECG spectrum acquired during execution of
a spin echo MRI sequence. The high frequency components of the
spectrum were attenuated by the small animal band-pass filter. This
MRI sequence appears to cause a wide-band interference within the
frequency band relevant for ECG acquisition, along with some very
high peaks. QRS detection on this signal yields no usable results.

MRI measurements

In contrast to the phantom measurements described in Section 5.2.1,
no usable MRI images of the hamster fitted with ECG electrodes could
be acquired with the sequences tested.
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Figure 5.9: Spectrum of a hamster ECG acquired within the MRT bore. During
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the scout sequence, MRI artifact dominates the spectrum.
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Figure 5.10: Spectrum of a hamster ECG acquired within the MRI bore,

zoomed in. The spectrum has been partially preserved at low
frequencies, even despite MRI artifact from the scout sequence.
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Figure 5.11: Spectrum of a hamster ECG acquired within the MRI bore during
a spin echo sequence. The high frequency components were
attenuated by the small animal band-pass filter.

5.2.3 Discussion

At present, the interactions between the ECG system and the MRI ma-
chine impair both ECG signal acquisition and MRI image creation.

MRI image creation

The comparison of MRI images acquired of the phantom and of the
hamster, both in presence and absence of ECG electrodes, shows a
degradation in the quality of the MRI images when the electrodes are
present. The images suggest that this effect is due to radio-frequency
interference caused by the presence of the ECG electrodes in the MRI
bore, which probably act as antennas in guiding interference into the
MRI acquisition volume. However, the degradation is much more sig-
nificant in the case of hamster measurements, where it yields unus-
able images, whereas for phantom measurements, it merely causes
grainy artifacts but image quality remains acceptable. This implies
that the body of the animal amplifies the radio-frequency interference
guided into the MRI volume by the electrodes.

Nonetheless, in the case of phantom measurements, the ECG elec-
trodes were connected together with a contact impedance (see Sec-
tion 5.2.1), while in the case of hamster measurements, they were
connected to the limbs of the animal (see Section 5.2.2). In order to
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evaluate the role of the animal body in the amplification of the in-
terference, phantom measurements should be carried out in a similar
configuration, ensuring that the electrodes are physically separated.
Since the phantom is made of plastic and is thus probably an insu-
lator, appropriate contact impedances must be ensured between the
different electrodes. Due to the limited amount of time available af-
ter the first animal MRI experiments, this measurement has not been
carried out yet.

Colleagues with MRI-related experience suggested adding 1nF fil-
tering capacitors between all ECG electrode lines and the common
ground to reduce radio-frequency interference, but our measurements
carried out with the phantom showed no quantifiable improvement
nevertheless.

ECG acquisition

A tentative simulation showed that by applying a band-pass filter
with sufficient attenuation in the higher stopband to the ECG signal
corrupted by interference from the scout sequence, the remaining low-
frequency components (see Figure 5.10) can be used to produce an al-
most usable QRS metric. This implies that in the case of this sequence,
further tweaking of the already implemented digital filtering could
probably be used to satisfactorily eliminate MRI interference from the
ECG signal.

However, several other sequences that were tested, e.g. spin echo,
produce wide-band interference within the frequency band of inter-
est for ECG measurement (see Figure 5.11). In these cases, the filter-
ing used in the ECG prototype system gives little hope of eliminating
MRI interference, thus new filtering techniques need to be considered.
Since the stray magnetic field of the solenoidal radio-frequency exci-
tation coil of the MRI machine can be expected to be small, and as
discussed in Section 4.2.3, the inputs of the ECG AFE are equipped
with sufficient analog filtering against out-of-band interference, digi-
tal filtering will probably be appropriate.

Measurements also revealed that the position of the ECG cable has
a great influence on the sensitivity of the system to power line inter-
ference. Further investigations could help establishing good practices
of cable layout.

38



SUMMARY

6.1 ACCOMPLISHMENTS

I spent the past year working at Mediso Medical Imaging Systems.
During this time, based on two different development kits, I produced
an ECG prototype system, which is fully functional with the firmware
I designed. I demonstrated the ability of the system to acquire human
and small animal ECG waveforms and detect QRS complexes.

Based on the experience gained with the prototype system, we de-
signed the final ECG system board. The circuit board is being man-
ufactured at the time of writing this thesis. Utilizing my work done
for the prototype and a demonstration board, I have completed the
development of a great part of the firmware of the future ECG system.

6.2 POSSIBILITIES OF IMPROVEMENT

The measurements carried out so far show that the system is not yet
able to perform satisfactorily in the MRI environment. The interactions
of the ECG system with MRI require further investigation in order to
achieve MRI-compatibility.

The firmware developed for the final ECG system needs to be com-
pleted and it should be tested with the final board as soon as the
latter is available.

The filters in use should be reviewed in order to eliminate the
glitches encountered during the acquisition of human stress ECG.

The ECG output amplitudes need to be calibrated in order to allow
voltage readout, taking into consideration the amplification of the
band-pass filters.

By keeping the currently used filters for QRS detection, and im-
plementing another set of filters which satisfactorily preserve all key
features of the ECG waveform for display, a diagnostic quality ECG
could probably be produced.
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APPENDIX

Listing A.1: Configuration of the ADS1298R.

// ADS1298R register values
Uint8 ADS1298RegVal[25] = {
#1f  ECG_SAMPLERATE == 500

0x86, // Register CONFIGl: Hi-Res EN, data rate = 500SPS
#elif ECG_SAMPLERATE == 1000

0x85, // Register CONFIGl: Hi-Res EN, data rate = 1000SPS
#elif ECG_SAMPLERATE == 2000

0x84, // Register CONFIGl: Hi-Res EN, data rate = 2000SPS
#elif ECG_SAMPLERATE == 4000

0x83, // Register CONFIGl: Hi-Res EN, data rate = 4000SPS

#else
#error Sample rate not supported!

#endif
0x10, // Register CONFIG2: variable WCT chopping frequency
0xDD, // Register CONFIG3: RLD buffer EN; Vref = 2.4V
0x03, // Register LOFF: DC current source Loff detection
0x00, // Register CH1SET: normal operation, PGA gain = 6
0x00, // Register CH2SET: id.
0x00, // Register CH3SET: id.
0x00, // Register CH4SET: id.
0x00, // Register CH5SET: id.
0x00, // Register CH6SET: id.
0x00, // Register CH7SET: id.
0x00, // Register CH8SET: id.
0x06, // Register RLD_SENSP: channels 2 and 3 (LA, LL) in RLD
0x02, // Register RLD_SENSN: channel 2 (RA) in RLD
OXFE, // Register LOFF_SENSP: Loff EN on all chans but IN1P
0x02, // Register LOFF_SENSN: Loff EN on IN2N (RA)
0x00, // Register LOFF_FLIP: Loff curr direction: default
0x00, // Register LOFF_STATP (read only)
0x00, // Register LOFF_STATN (read only)
OxOF, // Register GPIO: all GPIOs set to input (unused)
0x00, // Register PACE: PACE detect buffer off
0xFO, // Register RESP: respiration switched off
0x22, // Register CONFIG4: Loff comparators powered up
Ox0A, // Register WCT1: IN2P (LA) -> WCTA
OxE3 // Register WCT2: IN3P (LL) -> WCTB, IN2N (RA) -> WCTC
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