

Containment systems (cont'd) Cooling of NPPs

Reactor technology Lecture 5

Ildikó Boros

Assistant lecturer

Budapest University of Technology and Economics Institute of Nuclear Techniques (BME NTI)

26/04/2019

Reactor technology

CONTAINMENT SYSTEMS

Containment system

Containment system

- Function of the containment system:
 - (a) Confinement of radioactive substances in operational states and in accident conditions,
 - (b) Protection of the plant against external natural and human induced events,
 - (c) Radiation shielding in operational states and in accident conditions.
 - (d) Housing the technology
- Containment system includes:
 - Leaktight structures
 - Associated systems for pressure and temperature control
 - Features for isolation, management and removal of fission products, hydrogen, oxygen, etc.
- Important parameters: free volume, P_d, T_d, design leakage rate, number of penetrations, etc.

Design of containment systems for DBA

- Design basis: usually an LB LOCA accident
- In case of LOCA event, parameters for acceptance criteria:
 - Mass and energy flow from the RCS into the containment (quantity and time duration)
 - Heat transfer between the containment structure and the technology
 - Mechanical loads
 - Release of radionuclides into the containment
 - Release of radionuclides from the containment -> leakage rate!
 - Generation of explosive gas mixture

FIGURE 3. Temperature in containment main compartment for base case and modified input (natural convection model from Rohsenow et al., 1985).

Source: Tiselj, Kljenak, Prosek: Simulation of containment response during a large-break LOCA scenario with the CONTAIN code

Reactor technology

Containment sprav system

Ø6/04/2019

Design of containment systems for SA

- Severe accidents
 - For operating plants:
 - Re-evaluation of safety
 - analysis with deterministic and probabilistic analysis to identify reasonably practicable preventive or mitigatory measures
 - For new plants, severe accidents should be considered at the design stage of the containment systems
 - Requirement for new plants:
 practically eliminating the large
 release of radioactivity

Typical loads during an aircraft crash

Typical explosion load

Z6/04/2019

Reactor technology

Containment failure processes during SA

Mode α : steam explosion in the vessel or reactor pit, inducing loss of containment integrity in the short term; Mode β : initial or fast-induced loss of integrity;

Mode γ : hydrogen explosion;

Mode δ : slow overpressurization;

Mode $\epsilon:$ basement melt-through by the corium.

Containment types

Reactor technology

PWR full pressure containment

PWR full pressure double wall containment

FIG. I-2. Schematic diagram of a full pressure double wall containment system for a pressurized water reactor: 1, full pressures for eventainingent; 2, secondary confinement; 3, annulus; 4, annulus evacuation system; 5, filtered air discharged system.

PWR ice condenser containment

FIG. 1–3. Schematic diagram of an ice condenser containment system for a pressurized water reactor; 1, containment; 2, upper containment volume; 3, ice condenser; 4, lower containment volume; 5, lower contain React spring system g6, filtered air discharge system; 7, liner.

PWR ice condenser containment

26/04/2019

AP-1000 passive containment

FIG. I-11. Schematic diagram of a passive simplified pressurized water reactor: 1, incontainment refuelling water storage tank; 2, primary circuit depressurization system; 3, air baffle; 4, passive containment cooling system: gravity drain water tank; 5, containment vessel gravity spray; 6, natural convection air discharge; 7, natural convection air intake.

Comparison of PWR containments

Large dry cont.

Sub-atmospheric cont.

Ice condenser cont.

Туре	Material	Ref. Plant	Int. Diam. (m)	Free Volume (10000 m3)	Design pressure (bar)	Design Leakage Rate (%Vol/day)
Large dry	RC Hemi. Dome	Indian Point	41	74	3.2	0.1
Large dry	St. Cyl. Hemi. Dome	Davis Besse	40	81	2.8	0.5
Large dry	PC shallow dome	Zion	43	81	3.2	0.1
Large dry	PC Hemi. Dome	Trojan	38	57	4.1	0.2
Ice condenser	St. Cyl. Hemi. Dome	Sequoyah	32		0.7	0.5
Subatmospheric	RC Hemi. Dome	Surry	38	51	4.1	0.1

Bubbling condenser containment

Similar to BWR

Designed for LOCA accidents

Passive containment spray system

3 main compartments with bubbling condenser

•

٠

۲

FIG. I–4. Schematic diagram of a bubbling condenser containment system for a pressurized water reactor: 1, containment; 2, upper containment volume (wet well); 3, lower containment volume (dry well); 4, bubbling condenser system (suppression pool); 5, suppression pool cooling system (not required if the heat capacity of the condenser system (4) is sufficiently large); 6, passive spray system; 7, active spray system; 8, filtered air discharge system; 9, liner.

VVER-440/213 (Paks)

Figure 1-11: Hermetic compartments with the passive pressure reducing system (simplified)

ReSource: BME NTI

Source: BME NTI

Source: BME NTI

Reactor technology

Boiling Water Reactor (BWR)

Comparison of BWR containments

Containment venting

- A typical containment failure: slow overpressurization (see the Fukushima accident!)
- Preventing: containment depressurization
 - Containment cooling
 - Containment venting releasing contaminated, radioactive atmosphere from the containment into the environment by controlled, filtered way
- Became an issue only in 80's
- At first mainly in the emergency operational procedures of BWRs
- NRC requirement in 1988: hardened venting for Mark I type containments
 - Hardened venting: stronger, more resistant piping, valves, remote-controlled valves
- Containment venting can be performed also after core melting through the wetwell

PCV: part comprising D/W and S/C

Containment venting

- Fukushima experiences with containment venting:
- The measure designed for severe accident was not able to operate during the real severe accident!
- Problems with valve actuation (high dose rates, loss of electricity, compressed air operated valves, etc.)
- Requirements after Fukushima for containment venting
- NRC Task Force: reliable hardened venting instead of former hardened venting requirement (for Mark I and II)
- Reliable hardened venting should be considered also for other containment types (PWR!)
 Exhaust Stack
- Venting should be performed by passive controlling (pressure limiting) and by active (depressurization at selected time e.g. for activation of LPIS) as well
- Ventilation of wetwell and drywell should be possible for long term without endangering the personnel
- Common systems for more units in containment vent system should be avoided
- Seismic resistance

Containment venting

- Example: Westinghouse system for PWRs
 - Dry filter venting
 - Moisture separator at FCVS (Filtered Containment Venting System) inlet
 - Remove actuation (containment isolation valves) or with rupture disk
 - Can be realized with passive components
 - Aerosol filter: two stages for removal of particles
 - Pre-filter: metallic fibre with decreasing diameter (65-12 μm)
 - Main filter: metallic fibre with decreasing diameter (12-2 μm)
 - Iodine filter: molecule filter with zeolite (sorption of elemental and organic iodine)

DFM filter unit – Example of a 1300 MWe PWR

- Aerosols: > 99.99 percent (DF > 10,000)
- Elemental iodine: > 99 to 99.9 percent (100 < DF < 1,000)
- Organic iodine: > 90 to 97.5 percent (10 < DF < 40)

Source: Westinghouse

Reactor technology

COOLING OF NUCLEAR POWER PLANTS

Condenser cooling

- Why is it a special nuclear plant problem?
- Because at 1000 MW unit power the heat to be removed into environment is:

Condenser cooling

- Direct (once-through) cooling
 - River fresh water
 - Seawater cooling
- Recirculating or indirect cooling
- Dry cooling

E.g. USA, 104 units 60 direct cooling 35 wet cooling tower 9 mixed system

Reactor technology

Condenser cooling – fresh water cooling

- Low temperature fresh water source needed with proper mass flow rate.
 - Condenser heat exchanger surface is determined by ultimate heat sink (UHS) temperature
 - Example: Turkey (1% difference in power output depending on the sea choice)
- This is the main aspect concerning the siting of NPPs (beside the safety aspects)
- Sea water cooling: more effective cooling is possible, but requirements for materials are more rigorous
- Limitation for coolant outlet temperature -> design limits
- USA: "clean water act" fresh (river) water cooling practically eliminated

Scheme of fresh water cooled NPP

- 1. Water intake structures
- 2. Screens
- 3. Cooling pumps
- 4. Auxiliary hot channel
- 5. Coolant intake lines
- 6. Switching pit
- 7. Discharge pit
- 8. Condensers
- 9. Discharge channel

Fresh water usage: from river: max. 1/3 of the flow rate

Problems: continuous condenser cleaning

Reactor technology

Condenser cooling – cooling lake

- Advantages: (relatively) cheap and simple
- Low evaporation -> lower losses (than in spray ponds)
- Coolant pumps in bank pumping station or in turbine building
- Intake and offtake shall be separated
- Disadvantage: large area, large excavation work needed
- Loss: about 1 mm / day weeping to soil

Scheme of cooling lake cooled NPP

- 1. Directing dam
- 2. Water intake structures
- 3. Auxiliary hot channel

Offtake channel

- 4. Gravitational coolant intake lines
- 5. Switching pit
- 6. Offtake pit
- 7. Cooling pumps
- 8. Intake pits
 9. Condensers

10

Source: Margulova

Condenser cooling – cooling lake

$$m_{in} + m_{pr} = m_{leak} + m_{ev} + m_{out} + \Delta m_{e}$$

$$m_{in} \cdot c_{in} = (m_{leak} + m_{out} + \Delta m_{e}) \cdot c$$

 $m_{in,min} = (m_{ev} + \Delta m_e - m_{pr})/(1 - c_{in}/c)$

water mass balance

Dissolved material (salt) mass balance

 min
 mout

 min
 mout

 Source: I.
 Me

 Gács
 Plant

Necessary surface: 1 MW_e ÷ 1 ha

Cooling lake – South Ukrainian NPP

(Photo: AA)

Condenser cooling – wet cooling towers

Natural draftForced draft

Wet cooling tower

Prairie Island NPP, Minnesota, USA

26/04/2019

37

Condenser cooling – wet cooling towers

- <u>Natural draft cooling</u> <u>towers</u>
 - large concrete shell with a heat exchange 'fill'
 - effective cooling with large air-water surface
- Up to 120-200 m height
- Advantage: low area, no large water flow (river) necessary
- Disadvantage: high construction cost and water losses (about 3%)
- Counterflow and crossflow types

http://www.gea-energytechnology.com

Source: http://raicoolingtower.com

Reactor technology

Condenser cooling – wet cooling towers

- Mechanical draft cooling towers
 - have large axial flow fans
 - Can provide lower water temperatures
 - auxiliary power needed: typically about 1-1.2% of the output
 - Height: max. 50 m
 - used typically in Central and Western USA (because of extreme weather conditions)
 - Cooling towers are ~40% more expensive than a direct, once-through cooling system

Condenser cooling – dry cooling towers

- Direct dry cooling, using air-cooled condenser (ACC)
- Or with condenser cooling circuit (water enclosed and cooled by a flow of air past finned tubes in a cooling tower)

Finned tube heat exchanger

- High energy demand
- Low efficiency
- Used where the amount of freshwater is not enough (uses less than 10% of the water required for a wet-cooled plant)
- In USA and UK ruled out from new NPP applications
- Safety concerns (LOOP)

Condenser cooling system of Paks NPP

- 4*500 MW electric output, 4*1485 MW thermal power
- Condenser cooling: fresh water (once-through) cooling with the river Danube
- Water sources: river Danube, 30 m deep wells, 120 m deep stratum water
- Water usage of NPP:

Condenser coolant	105	m³/s
Safety water system	3	m³/s
Component cooling water	2	m³/s
Fire water	0.21	m³/s
Drinkwater 26004/2019	0.01	m ³ /s

Water intake structure at Paks NPP

Condenser cooling at Paks NPP

rate and quality for the condenser cooling

Paks NPP – regulatory limits

- The temperature difference between the discharged water to the Danube and the temperature of the Danube water shall be below 14 °C (under 4 °C Danube water temperature) or below 11 °C (above 4 °C Danube water temperature),
- The temperature of the Danube water shall not exceed 30 °C at any point of the cross section in a distance of 500 m from the discharge (energy break structure)

44

45

Essential service water system (ESWS)

- Function: supplying coolant for consumers that are necessary for maintaining the fundamental safety functions (cooling the reactor and keeping it in subcritical state)
- Main consumers of ESWS
 - Heat exchangers of emergency coolant systems
 - Cooling of MCP, CRDM (control rod driving mechanism) intermediate cooling circuits
 - Cooling of spent fuel pool heat exchanger
 - Cooling of emergency diesel generators
 - Cooling of containment recirculation air cooling system
- The system has different tasks in normal operation and in accidental conditions:
 - In normal operation it serves the consumers of technology system and the shutdown and cooldown systems of the reactor
 - In accidental conditions: it supplies the consumers of decay heat removal systems