

Design of nuclear plants

Reactor technology Lecture 1

Ildikó Boros

Assistant lecturer

Budapest University of Technology and Economics Institute of Nuclear Techniques (BME NTI)

24/10/2018

Reactor technology

Contents

Operation of nuclear reactors (lecturer: Mr. Szabolcs Czifrus)	
Reactor technology (lecturer: I. Boros)	 Main NPP types, reactor generations. Advanced NPP types
	2. Fuel, reactor core, pressure vessel
	 PWR main systems (primary, secondary systems), safety systems
	4. Containment systems
	5. Cooling of NPPs
	6. BWR, PHWR, other types
	7. exotic reactors (fast breeders, etc.)

Nuclear energy at present

 Share of nuclear in electricity production (2011 -> 2014):

world	16%	\rightarrow 11%
EU	35%	→ 27%
Hungary	36%	→ 53%

- 448 NPP units operate worldwide
- 57 units under construction
- Design lifetime of most units expires between 2015 and 2030

Source: IEA Electricity Information 2014

Nuclear energy at present

Nuclear Generation by Country 2015

Share of nuclear in electricity production (2011 -> 2014):

world16% \rightarrow 11%EU35% \rightarrow 27%Hungary36% \rightarrow 53%

- 448 NPP units operate worldwide
- 57 units under construction
- Design lifetime of most units expires between 2015 and 2030

Source: IAEA PRIS Database

•

Trends in nuclear industry

Nuclear Electricity Production

Source: IAEA PRIS

Trends in nuclear industry

Total Number of Reactors: 57

BASICS OF NUCLEAR TECHNOLOGY

- In certain isotopes, spontaneous or induced fission of the nucleus can occur
 - Induced fission: effect of bombardment of thermal neutrons
- Uranium isotopes in nature
 - $^{234}U_{92} (0.006\%)$ $^{235}U_{92} (0.714\%)$ $^{238}U_{92} (99.28\%)$
- Enrichment for nuclear power reactors <5% (U-235)

- U-235: fission generated by thermal neutrons can take place
- In average, 2.4 fast neutrons are produced in every fission
 - A small part of these neutrons are delayed (for U-235: β =0.64%), with a maximum release time of 60 s (prompt neutrons: up to 10⁻¹⁴ s)
 - Delayed neutrons are extremely important in control of the chain reaction

ENERGY DISTRIBUTION FOR FISSION INDUCED BY THERMAL NEUTRONS

Fission product kinetic energy168Neutron kinetic energy5Fission gammas (instantaneous)5Fission gammas (delayed)6Fission product betas7Total available as heat191Neutrino energy (not available as heat)11TOTAL202	Source	Energy MeV
	Fission product kinetic energy Neutron kinetic energy Fission gammas (instantaneous) Fission gammas (delayed) Fission product betas Total available as heat Neutrino energy (not available as h TOTAL	168 5 6 <u>7</u> 191 neat) <u>11</u> 202

24/10/2018

- For different neutron-nucleus interactions:
- Microscopic cross section for nuclear reactions (for one given nucleus, and for 1 unit of neutron flux)

 $\sigma_t = \sigma_s + \sigma_a = \sigma_{elastic} + \sigma_{inelastic} + \sigma_{fission} + \sigma_{capture}$

- Where t: total, s: scattering, a: absorption
- Unit: barn (10⁻²⁴ cm²)
- Macroscopic cross section (for a given material):

$$\Sigma_t = \sum_i n_i \sigma_{ti}$$

- Where i is for all nuclei, n_i: number of nuclei by unit volume
- Unit: 1/cm

NEUTRON CROSS-SECTIONS FOR FISSION OF URANIUM AND PLUTONIUM

• Production of Pu-239 in thermal reactors:

$${}_{92}U^{239} + {}_{\rho}n^1 \rightarrow {}_{92}U^{239}$$
$${}_{92}U^{239} \xrightarrow{\beta^-}_{23\min} {}_{93}Np^{239} \xrightarrow{\beta^-}_{23day} {}_{94}Pu^{239}$$

24/10/2018

- Fission fragments, fission products
- A typical fission reaction:
- $_{0}n^{1} + _{92}U^{235} \implies (_{92}U^{236})^{*} \implies _{38}Sr^{90} + _{54}Xe^{144} + 2n$
- Fission yield
- Important fission products:
 - I-133, Sr-90, Cs-137 etc.
- (+ don't forget the trans-uranium isotopes!)

24/10/2018

- Neutrons can be thermalized (slow down by scattering) and cause further fission
- Moderator materials
- Requirement: to reach thermal energy without being absorbed (by U-238 OR by the moderator itself)
 - > Having as few collision as it is possible

Neutron Life Cycle

Moderator materials

Moderator	H ₂ O	D ₂ O	Graphite
parameters			
moderation path	5.74	10.93	19.7
neutron	0.66	0.0026	0.0045
absorption cross section [barn]			

- Advantages and disadvantages of different materials
- Deuterium or graphite moderator: operation possible with natural uranium
- For H2O moderator enrichment of U-235 is necessary

- Chain reaction
 - Series of fission becomes self-sustaining
 - Multiplication factor: k_{eff}
 - Reactivity: $\rho = (k-1)/k$
 - Critical, subcritical,

supercritical chain reaction

Nuclear reactors

- Neutrons in nuclear fuel
 - Scattering (slow down)
 - Absorption
 - Escape
 - Fission generation
- Thermal nuclear reactors
 - Fuel fissile material, usually U or Pu (or MOX)
 - Moderator with good slowdown parameters + small absorption (H_2O, D_2O, C)
 - Reactivity control neutron absorbing material (B, Cd)
 - Cooling (H_2O, D_2O, CO_2, He)
 - Radiation protection (concrete, water, boric acid, etc.)

Why is nuclear safety so important?

- Specific risks of nuclear reactors (compared to other plant types):
 - Large amount of fissile material in the core
 - Large quantity of radioactive materials in the core
 - Significant energy release for a long time after shut down.

TABLE 3.2. MAXIMUM ACTIVITY OF THE MAIN FISSION PRODUCTS.				
	Core, 2 h after shutdown	Spent fuel	Primary system	Gaseous effluents
Rare gases	10 ⁷ TBq	10 ⁶ TBq	3 10 ² TBq	2 10 ² TBq
Iodine	2 10 ⁷ TBq	10 ⁶ TBq	20 TBq	
Caesium	10 ⁷ TBq	2 10 ⁴ TBq		

Safety depends on appropriate confinement of radioactive materials, control of the chain reaction and efficient cooling of the core!

Boiling Water Reactor (BWR)

PWR design

• Two cooling circuits (loop =/= circuit!)

Source: NRC

- Primary parameters set to avoid boiling (p_{pr}: 130-160 bar, T_{pr}: 260-300°C)
- Secondary circuit: classic water-steam coolant regime (Rankine-cycle at about 50-65 bar pressure)

Nuclear energy at present

	Reactor Type	*	Reactor Type Descriptive Name	Number of Reactors	Total Net Electrical Capacity [MW]
$\left(\right)$	BWR		Boiling Light-Water-Cooled and Moderated Reactor	78	75208
	FBR		Fast Breeder Reactor	3	1369
	GCR		Gas-Cooled, Graphite-Moderated Reactor	14	7720
	LWGR		Light-Water-Cooled, Graphite-Moderated Reactor	15	10219
	PHWR		Pressurized Heavy-Water-Moderated and Cooled Reactor	49	24634
\langle	PWR		Pressurized Light-Water-Moderated and Cooled Reactor	290	272450
	Total			449	391600

Source: IAEA

24/10/2018

Reactor technology

REACTOR GENERATIONS

Generations of Nuclear Energy

Source: Gen IV Forum

Generation IV

First generation NPPs

- Prototype reactors of 50s and 60s
- Low unit capacity (<250 MW)
- Small series, rather individual reactors (except Magnox)
- Safety deficiencies (lack of containment, poor emergency cooling etc.)
- Exotic types:
 - FBR Fermi I
 - GCR Magnox
 - HWGCR Monts D'Arree
 - SGHWR Winfrith

FBR —	Fast Breeder Reactor
GCR –	Gas Cooled Reactor
HWGCR –	heavy water gas cooled reactor
SGHWR –	steam generating HWR

Control room of Winfrith SGHWR (1967-90, 100 MWe)

Decommissioning of Winfrith SGHWR

First generation NPPs

• <u>EBR (Experimental Breeder Reactor)</u>

- Licensed in 1951 the first electricity generating reactor of the world, but not an NPP
- Fast reactor
- Fuel: uranium enriched to 94%
- Coolant: liquid Na-K

• P_{th}=1400 kW, P_e=200 kW.

 Supplied the lighting of a building of National Reactor Testing Station

Source: INL

First generation NPPs

- 27 July, 1954: **Obninsk NPP** connected to the grid
- Ancestor of later RBMK reactor type
 - Graphite moderated, channel-type, boiling water reactor
- 5 MW P_e
- Shutdown in 2002

Second generation NPPs

- Most of the operating NPPs
- Commercial types, with large series
- Mainly light water (LWR: BWR/PWR) or heavy water (PHWR) reactor types
- Developed from the operational experiences of first generation reactors (the safe, economical types were kept)
- Same standardization can be observed, but the units have more non-series parameters

LWR – Light Water (cooled and moderated) Reactor
BWR – Boiling Water Reactor
PWR – Pressurized Water Reactor
PHWR – Pressurized Heavy Water Reactor

A typical Generation II NPP: Paks NPP, VVER-440

- VVER-440/V213
- Paks NPP: 4 Units, with an electric output of 500 MW (per unit)
- Connected to the grid:
 - unit 1: December 28, 1982,
 - unit 2: September 6, 1984,
 - unit 3: September 28, 1986,
 - unit 4: August 16, 1987.

- Originally planned
 lifetime: 30 years
- Now a lifetimeextension program is in progress (+20 years)

Parameter	Value
Thermal power of reactor	1,485 MW
Primary coolant volume flow rate	42,000 m³/h
Primary pressure	123 bar
Primary circuit cold leg temperature	267 °C
Primary circuit hot leg temperature	299.5 °C
Shutdown boric acid concentration	13.5 g/kg
Fresh steam pressure	46 bar
Fresh steam mass flow rate	2,940 t/h
Fresh steam temperature	255 ℃

Figure 1-6: Arrangement of main equipment in the primary circuit

Generation III nuclear plants

Generations of Nuclear Energy

Source: Gen IV Forum

Generation III NPPs

- Advanced reactors, being deployed between 2000 and 2030
- Developed from Gen II designs (evolutionary and innovative types)
- Tendency of development:
 - Economically more competitive types
 - decreasing of construction costs.
 - Simplification, standardization, modular construction, large unit size, shorter construction period, etc.
 - Improvement of safety
 - decreasing the probability and consequences of accidents.
 - Development of active and passive safety systems.
 - Non-proliferation objects
 - with engineering or administrative means
 - Sustainable development

Generation III NPPs

• Economic competitiveness

- At nuclear: the 45-75% of generating costs are construction costs.
- At coal this ratio is 15-40%.
- Nuclear investments are capitaldemanding because of the <u>high</u> <u>construction costs</u> and <u>long</u> <u>construction period</u>
- Investors have to take long rate of return into account
- Costs can be cut back with cogeneration (district heat, hydrogen production, sea water desalination)

Means for competitiveness (examples):

- Unit size increase, construction time decrease
- Standardization, serial products
- More units per sites
- Modularization
- Passive systems
- Reducing the number of components

AP1000 - Source: Westinghouse

Generation III NPPs

- Safety improvement
 - Objective:
 - To decrease the probability and consequences of accidents
 - To eliminate the possibility of large off-site release (maintaining the hermetic containment)

IAEA requirements: INSAG-12, 1999:

- For operating plants, the CDF target is 10⁻⁴ /year. (The probability of considerable off-site release could be reduced by an order with emergency procedures.)
- For new NPPs the CDF target is 10⁻⁵ /year
- For new NPPs only limited consequences are allowed
- Means: advanced active and passive safety systems, reducing the core damage frequency (CDF) and large release frequency (LRF)

• Passive safety systems

- Based on physical processes, operating without outer action or energy sources
- Heat removal from primary circuit and containment by processes driven by gravity, natural circulation and compressed (high pressure) gas
- Heat sink: evaporation pool or air cooling
- Other engineering tools
 - Larger water volumes (pressurizer, steam generator), lower power density, negative reactivity coefficients -> larger margins and time constraints
 - Reliable, redundant and diverse systems with physical separation
 - More robust containments, defense against external risks (double wall containment)
 - Management of severe accidents (corium cooling + handling)

Passive safety of Generation III

Passive systems of Kerena by Areva (former SWR-1000 of Siemens-Framatome)

Passive safety of Generation III

- Example: SWR-1000: advanced boiling water reactor
- P_{el}=1250 MW
- Passive safety systems
 - Emergency condensers
 - Containment cooling condenser
 - (Core flooding system)

An example for passive safety systems: the former SWR-1000 of Siemens-Framatome (now Kerena)

Reactor technology

Generation III at present

- Operating Gen3 units at present:
 - ABWR: 2 units in Japan temporary shut down
 - APR-1400: Shin Kori 3 (Korea)
 - VVER-1200: Novovoronezh-II-1 (Russia), Leningrad II-1 (Russia)
 - EPR: Taishan
 - AP1000: Sanmen-1, 2, Haiyang-1, 2 (China)
- Under construction:
 - ABWR
 - Taiwan: Lungmen-1, -2
 - Japan: Shimane-3
 - EPR
 - Finland: Olkiluoto-3
 - France: Flamanville-3
 - China: Taishan-1 and -2
 - APR-1400
 - South-Korea: Shin-Kori-4
 - United Arab Emirates
 - AP-1000
 - China: Sanmen-1, 2, Haiyang-1, 2
 - USA: Vogtle-3 and 4, Virgil C. Summer -2 and -3
 - VVER-1200
 - Russia: LNPP-2, NVNPP-2
 - Belarus: Astravets
 - ACPR1000, Hualong One
 - Yangjiang, Hongyanghe, Tianwan, Fuqing, Fangchenggang 24/10/2018 Reactor

EPR

- EPR European Pressurized Water Reactor
- At the moment:
 - 4 units under construction (2 in China, 1 in Finland, 1 in France)
- Generation III, evolutionary design developed on the basis of the French N4 and the German Konvoi types
- PWR
- Thermal power: ~4500 MW
- Electric output: ~1600-1650 MW
- Efficiency: 36-37% (2nd generation PWRs: ~ 33%)

EPR

- Primary circuit:
 - Operational pressure: 154 bar
 - Input/output temperature: 296/327 °C
 - 4 primary loops
- Secondary circuit:
 - Operational pressure: 78 bar
 - Fresh steam temperature: 290 °C
 - 1 HP + 3 LP turbine
- Double wall hermetic containment, designed to withstand the crash of a large passenger airplane

EPR safety systems

- Safety philosophy: to prevent off-site consequences with:
 - Improving accident prevention systems.
 - Tools: simplification, physical separation, reducing the possibility of human failure
- Decrease the consequences of severe accidents tools: containment cooling, corium catching and cooling, cooling of basemat

from below

- <u>CDF: 10⁻⁶ / year</u>, frequency of large release is even lower
- 6 m thick concrete basemat
- Double wall containment, the outer wall covers the 2. and 3. auxiliary buildings as well

Corium spreading area 24/10/2018

Reactor technology

Olkiluoto-3, the first EPR unit

- December 2003: Owner TVO selected the AREVA EPR[™] design to be built at Olkiluoto
 - Turn-key contract: **3.2 billion** euro
- Original plan: start of construction in 2004, start of commercial operation in **2009** (5 years construction time).
 - July 2005: Start of construction, first concrete pouring
 - June 2010: Installation of the reactor pressure vessel in the reactor building
 - November 2011: Installation of heavy components of the primary cooling system complete
- Now: start of commercial operation in 2015 or 2016 2018, costs ~8 billion euro
- Various problems including project-coordination, dialogue with authority, quality problems

AP1000

- AP1000 Advanced Passive Plant, Westinghouse
- Under construction:
 - 2 Units at Sanmen NPP, China (February 2008)
 - 2 Units at Haiyang NPP, China (July 2008)
 - 2 Units at Vogtle NPP, USA (February 2012)
 - 2 Units at Virgil C Summer (March 2012)
- PWR with two loops
- Electric output: 1117 MWe
- Passive safety systems
 - Simplified systems with less component than present PWRs
- NRC design certification in 2005
- **CDF=5,09x10⁻⁷ / year** according the PSA analysis
- Modular construction (transport by rail or by ship)
- Planned construction time: 36 months (⁽ⁱ⁾)
- 18 month campaign
- 60 years planned lifetime

AP1000 – Source: Westinghouse

AP1000

AP1000

- Passive safety systems: no operator action is necessary in the first 72 hours of a DBA (including SBO)
- Passive core cooling system for LOCA, remanent heat removal, automatic depressurization and coolant injection
- Passive Containment Cooling System
- Main control room emergency habitability system – for 11 people for 72 hours
- Containment isolation 60% less penetration

Source: Westinghouse

AP1000 pressure vessel outer flooding

 Severe accident management: preventing RPV failure in case of core melting (outer RPV flooding system)

AP1000 - Vogtle

- USA: last construction license was issued in 1978
- New licensing system (separated design assessment and site permit, combined construction and operation license) no combined license issued until 2012
- February 2012: NRC issued combined license for Southern Company for the construction of two AP1000 units at the Vogtle site, where 2 PWR units are operating (votes 4:1)
- According to the schedule, the new units could start in 2016-2017 2017-2018 2019-2020

U.S. approves first nuclear plant in decades The Nuclear Regulatory Commission has approved the construction of the first new nuclear plant in more than 30 years. Two AP1000 reactors will be built at Plant Vogtle near Augusta, Georgia Proposed sites of Washington D.C. AP1000 reactors 0 William Lee 200km Harris 120 miles NORTH CAROLINA Bellefonte' SOUTH V.C. Summer CAROLINA Plant Vogtle: First GEORGIA two reactors could be online by 2016 / 2017 ev FLORIDA **AP1000 PRESSURIZED** ALABAMA WATER REACTOR 1 Reactor core 3 Pressurizer 2 Steam generators 4 Passive cooling water tank Turkey Point 5 Coolant pumps 6 Inner steel-walled *NRC review suspended containment vessel AP1000 NUCLEAR PLANT Radwaste building Fuel handling area Reactor housed in concrete Control room Turbine containment building building © GRAPHIC NEWS Sources: Westinghouse Electric Company, NRC, wire agencies

VVER-1200

- Gidropress
- PWR
- Based on VVER-1000 (AES-91 and AES-92) models
 - AES-91: Tianwan
 - AES-92: Kudankulam
- Generation III+
- Nominal gross power: 1200 MW
- 60 years lifetime for the main equipment
- Load following capability
- CDF < 6x10⁻⁷ /reactor.year
- LRF (Large release frequency) < 10⁻⁷ /reactor.year

Kudankulam NPP

VVER-1200 (AES 2006)

- Models (same parameters, different safety solutions):
 - <u>V392M</u> developed by the Moscow design institute (in operation and under construction in Novovoronezh)
 - <u>V491</u> developed by the St. Petersburg design institute (under construction in the Leningrad-II NPP, in Belarus NPP, in Baltic NPP), planned at Paks NPP

Operational parameters				
Efficiency	33,9%			
Pressure of primary circuit	162 bar			
Temperature of primary coolant 298-328 °C				
Steam pressure	68 bar			
Steam temperature	283 °C			
Initial enrichment	4,79%			
Burnable poison	Gd2O3			

VVER-1200 V491 safety systems

- Application of European Utility Requirements and safety philosophy (DBC, DEC conditions)
- Designed to resist external hazards (e.g. wind, tornado, snow pressure, seismic effects – 0.25 g maximal PGA)
- Active systems: 4x100% redundancy, physical separation
- Passive safety systems

Four branches of the active safety systems

Reactor technology

VVER-1200 V491 safety systems

- Active safety systems (ECCS, CS, emergency boron injection system, residual heat removal system, emergency feedwater system, etc.)
- Localization systems
 - Double wall cylindrical containment made of prestressed concrete,
 - Steel cladding (liner) on the inner surface of the internal wall
 - Leakage rate: 0.2% for 24 hours
 - P_d: 5 bar T_d: 150 °C
- Passive systems (BDBA)
 - Hydroaccumulator (59 bar)
 - Passive containment heat removal
 - Passive SG cooling
 - Experimental and numerical tests
 - Passive autocatalytic H-recombiners (1000 kg H2)

Heat exchanger of PHRS-SG

Passive SG cooling system

VVER-1200 / V491

1- passive containment cooling system

2- passive heat removal system (PHRS SG)

3- PHRS tank

4- emergency chemical addition

5- hydrogen recombiner

6- hydrogen monitoring transmitter

7- pressurizer safety valve

8- core catcher

9- SPF water supply

10- borated water tank

11- core catcher closing valve

Source: Atomstroyeksport

VVER-1200 V491 safety systems

- Severe accident management: core catcher introduced in Tianwan NPP
 - Large size core catcher to minimize the corium thickness
 - Preventing re-criticality
 - Outer cooling with natural circulation (passive)
 - Corium can be flooded
 - Because of the thick corium layer, 1 year is necessary for full solidification
- Mass: 150 t, height: 6 m
- Al2O3-Fe2O3 mixture as sacrificial material (200 t)
- Double wall core catcher

VVER-1200 V491 safety systems

• Core catcher

24/10/2018

Reactor technology

Generation IV reactors Generations of Nuclear Energy

- Generation IV: reactor designs to be deployed from 2030
- Designs developed based on all operational and safety experiences
- Main goal is to ensure the sustainable electricity generation (coupled heat and electricity generation, hydrogen production, seawater desalination)

Fuel cycle and sustainability

Reactor technology

- Expectations for <u>open fuel</u>
 <u>cycle</u> (with the present electricity generation)
 - Largest amount of waste but still less than in case of other energy sources
 - Amount of waste is limiting the use of nuclear energy: many final disposals are necessary in the next decades
 - Most unfavorable utilization of the resources: the known resources will depleted before the end of the century

Effect of fast reactor introduction on the fuel utilization Source: GenIV

Fuel cycle and sustainability

- Expectations for <u>closed fuel</u> <u>cycle</u> (with the present electricity generation)
 - Amount of waste can be decreased significantly
 - With the use of transmutation facilities, waste amount can be decreased by an order of magnitude
 - Different waste fractions could be managed separately
 - Problems:
 - Cost reduction
 - Proliferation risks

Effect of fast reactor introduction on the fuel utilization Source: GenIV 57

Reactor technology

Transition from Gen III to Gen IV

- Present: operating Generation II reactors with lifetime extension
- Generation III/III+: for replacement of the existing fleet around
 2020
- Generation IV: deployment in 2030-2035

Surce: GenIV

Surce: GenIV

Surce: GenIV

Source: GenIV

Source: GenIV

Source: GenIV

